
-A124 853 APPLICATIONS DIRECTED N16ROPROGRAMNING ON A V/2
MINICOMPUTER SYSTEN(U) AIR FORCE INST OF TECH
NRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

UNLSSIFIED G A SCHOON DEC 82 AFIT/GCSEE/82D-31 F/G 9/2 NN monsoon sohhiE
EhhhhhhhhhhhhE



~11-

u 1"
1 1.

..,,.

i 
:" MICROCOPY RESOLUTION TEST CHART

NATIONAL BURE.AU Of STAND
ARD

S
' '

1
cJ 3 - A

to IL" W
IZ __..2

lilt! ii t AO . .7
11111 .



+. - . , . . . + . + - - . . • .. . - . .

Vol

tO

7 CD

_ _ _ _ _ _ _ _ _ _ _L E C T E
Ts document has been approved FB2 4 193

for Public reeaean sl; t

* 1~ii

- A%

TDEPARTMENT OF THE AIR FORCE

C= AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

83 02 024 040



. . .. ... -, , . ' - - . -. , - -, - .- - - . - , , - . . .. -. . . . . w-.-- - -. - . -

AFIT/GCS/EE/82D-31

APPLICATIONS DIRECTAe)
MICROPROGRAMIMI N(

ON A MINICOMPUTLR SYSTEM

THESIS

AFIT/GCS/EE/82D-31 GARY A. SlOON
Capt USAF

4 Approved for public release; distribution unlimitedj.

4o..



AFIT/GCS/EE/82D-31

APPLICATIONS DIRECTED

MICROPROGRAMMING

ON A MINICOMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science ,

I'I

by

GARY A. SCHOON, B.S.

Capt USAF

Graduate Computer Systems

December 1982

Approved for public release; distribution unlimited.



Acknowledgements

I would like to thank my thesis advisor, Dr. Gary

Lamont for his guidance throughout this project. I would

also like to thank Dr. Thomas Hartrum and Major Charles

Iwould like to thank Mr. John Steidle for getting me

statedon the project and acting as my sponsor.

Mr. Glenn Williams and Mr. Conrad Phillippi deserve

speialthanks for volunteering the use of their computer

programs and for assisting me in understanding and using

the programs.

Finally, I wish to thank my wife Malee and daughter

Michelle for their patience during this difficult period.



Contents

Page

Acknowledgements................... . . ..... .. .. . ...

List of Figures.......................vi

List of Tables.........................vii

Abstract...........................viii

1. Introduction................... . . .. . .. .. .....

Introduction.................. . . ... .. .. .....
Background......................2
Problem.................... . . ..... .. .. .....
Scope..........................4
Approach.......................4
Limitations.......................6
order of Presentation..................6

II. Survey of HP Users at Wright-Patterson Air Force
Base..........................8

Introduction.......................8
Organizations Surveyed...............8
Criteria for Candidate Programs..........9
Candidate Programs.................12
Wind Tunnel Stress Control Program. ........ 13
Laser Materials Modeling Program. ......... 16
Conclusions....................20

III. Analysis of Candidate Programs............22

Introduction....................22
Analysis Techniques................22
Activity Profile Generator Program. ........ 25
Wind Tunnel Stress Program Analysis ........ 26

4 Laser Materials Modeling Program Analysis . 27
Summary.........................43

IV. Requirements, Design, Implementation, and Test of a
Microprogram for the Wind Tunnel Control Program . 44

Introduction......................44
LOADS Requirements.................44
Design of LOADS...................48
Implementation of LOADS...............50
Testing..........................52

Module Test.....................52
- System Test.....................54

Summary.......................56



Page

V. Requirements, Design, Implementation, and Test of a
Microprogram for the Laser Materials Model Program 57

Introduction ....... ................. 57CALCsig ReqiMens........................... 5MCALC Requirements ........ .. .. .. 57

Design of MCALC....................65
Implementation of MCALC ... ............ 74
Testing ........ .................... 76

Output Verification .... ............. . 77
Speed Measurement .... .............. 78

Summary .................... 79

VI. Automating the Tuning Process .. ........... . 80

Introduction ...... .................. 80
Background ....... ................... 80

Tuning Approach #1 .... ............. 80
Tuning Approach #2 .... ............ 83
Tuning Approach #3 .... ............. 87
Review of the Three Approaches ....... . 89

Automating the AFIT HP 21MX System ....... . 92
General Requirements ... ............ 92
Possible Approaches ......... ..... 93

Summary.. . .................. . 105

VII. Results, Conclusions, and Recommendations .... .. 106

Introduction ....... ................... 106
Results ......... ...................... 106
Conclusions ....... .................... 108
Recommendations ...... .................. 109

Bibliography ......... ..................... 111

Appendix A: Microprogramming Concepts ... ......... . 114

Appendix B: Glossary of Terms Used in this Report . . . 121

Appendix C: List of HP Users at Wright-Patterson .... 124

Appendix D: Program Listings for ACTV, RCORE, IDGET 125

Appendix E: Instructions for Running ACTV on RTE-III . 131

Appendix F: Program Listings for SDRVR, STRES, SPEED . 133

Appendix G: Program Listings for MSPED, LOADS ..... 141

Appendix H: Program Listing for WCSLD .. ......... 148

iv



Page

Appendix I: Program Listings for CDRVR, CALC..... .. ..

Appendix J: Program Listings for Modified CALC, ACALC,
MCALC . . . . . . . . . . . . . . . . . . .

Vita.............................

4v



,-- . - < ? ' i i 
° . 

" -w--" - ~-.- . .. . . . . . - ... . •

List of Figures

Figure Page

1 Wind Tunnel Cross Section .............. 13

2 Wind Tunnel with Variable Geometry Walls ...... . 14

3 Reflectivity of a Laser Material Sample ..... ... 18

4 Level 1 and 2 DFDs for Subroutine SPEED ........ . 45

5 DFD for LOADS Microprogram .... ........... . 45

6 LOADS Microprogram Structure Chart .. ......... 49

7 Level 1, 2, and 3 DFDs for Subroutine CALC ..... .. 59

8 Level 1 and 2 DFDs for MCALC Microprogram ........ . 62

9 Level 3 DFDs for MCALC Microprogram .. ......... .. 63

10 MCALC Microprogram Structure Chart (Levels 1 and 2) 66

11 MCALC Microprogram Structure Chart (level 2 Factor) 68

12 Average Gain of Test Programs .... ............ 86

13 Model of an Automatic Tuning Mechanism .......... ... 88

14 Functional Configuration of the Experimental System 90

15 Mapping Profile Intervals to Logical Program Segments 95

16 Microprogram Synthesis Example ... .......... 99

17 Program Instruction Hierarchy ... ........... 115

18 Example Microprogrammed Computer Architecture . . . 116

vi



List of Tables

Table Page

I user Microprogammability Provisions of HP 1000

Computers.............................11

11 Program Activity Profile for SDRVR, STRES, and

SPEED...............................28

III Program Activity Profile for SPEED ............ 30

IV Program Activity Profile for LOOPi of SPEED . .. . 32

KV Load Map for SDRVR, STRES, and SPEED .. .......... 34

VI Program Activity Profile for CDRVR and CALC .... 36

VII Program Activity Profile for CALC ............ 38

VIII Program Activity Profile for DO Loop of CALC .. . . 40

TVIx Load Map for CDRVR and CALC .................. 42

X Data Flow Name Definitions..................60

xi HP 21MX Memory Reference Group Microroutines and

FETCH......... .........................101

vi i



:-,',-''V ' ,"- "" -" -""- - .- ." --" - - ' " - - ' ", " -". - -. . . . . . . --" " • .. -
m.

tA

Abstract
I '*

The use of microprogramming to improve the performance

of application programs was investigated. The application

programs used in the study were from various research labor-

atories at Wright-Patterson Air Force Base, Ohio.7'"The user-

microprogrammable Hewlett-Packard (HP) 21MX minicomputer was

used for the investigation.

Two application programs were chosen as candidates for

microprogramming, a wind tunnel stress analysis program and a

laser materials modeling program. The programs were analyzed

to determine where microprogramming should be applied using

an activity profile generator program. The microcode for the

programs was implemented, and the speed improvement measure-

ments of the resultant programs were made.

The study further looked at the feasibility of auto-

mating the microprogramming tuning process on the HP 21MX

computer. Approaches to automatically selecting program

segments for microprogramning and automatically synthesizing

the microcode were discussed.

I

[[ ' 4 i i



.,. Applications Directed Microprogramming on a Minicomnputer

System

I. Introduction

Introduction

* General purpose computers are by definition designed

to be used for a wide variety of applications, and thus are

very versatile. It is because of this versatility, how-

ever, that these computers are inherently ineffecient for

many applications. The ideal situation, from a performance

point of view, would be to have a computer which was de-

signed specifically for each application. Since this is

not realistic, the user must usually accept the performance

of the general purpose computer. For most applications,

this -s quite acceptable.

Some applications, however, may have requirements

which exceed the capability of the general purpose com-

puter. The user may then be forced to buy a special pur-

pose machine -- a very expensive solution to the perfor-

mance problem. If, however, the user's general purpose

machine is user-microprogrammable, another possible solu-

tion exists. The user-microprograimnable computer can often

be "tuned" using microprogram ing to meet the specifica-

tions of special application programs. That is, speciala. -
instructions can be added to the computer's instruction set

which will more efficiently perform the basic operations or



*-. "." "primitives" of the appl.ication program. T.G. Rauscher

notes: "The efficiency of solving a particular problem de-

pends primarily on the degree to which the architecture

supports the problem pritnitives" (Ref. 1:1006).

It is this use of microprogramming to improve the

performance of application programs which is the subject of

this thesis investigation. This introductory chapter cov-

ers background information, the specific problem investi-

gated, and the approach taken to solve the problem.

Background

The origin of microprogramming can be traced back to

1951 when M.V. WilKes (Ref. 2) proposed using "micropro-

grainmes" as an alternative to the "ad hoc manner" in which

computer control units were being designed. The technique

was not widely used commercially until the mid 1960s when

IBM introduced the microprogrammed version of the

System/360 (Ref. 3). Since then microprogramrning has been

widely used in the design of computer control units.

* The introduction of a writable control store (WCS),

that is read/write memory used to store microprograms, made

it practical to use microprogramAning to improve the per-

*ll formance of application programs. Depending on the appli-

cation, performance can mean such things as speed, accura-

cy, or special data formats (Ref. 4:25). Speed is the

* .primary performance measure considered here. Properly ap-

plied, microprograrinring can increase the speed of a prograin

2

I



considerably. Gains of six to ten times or more are pos-

sible (Ref. 5:98). Because of limited memory available for

microprograms and because of the complexity of the micro-

programming task, it is not possible to completely micro-

program most application programs. Microprogramming is

therefore applied at points in the application program

where most of the execution time is spent. For a more de-

tailed discussion of microprogramming and how it provides

improvement in program execution time, the reader should

refer to Appendix A. Appendix B contains a glossary of

terms used in this report.

Problem

The problem considered in this thesis investigation is

the use of microprogramming on the user-microprogrammable

Hewlett-Packard (HP) 21MX computer. This machine is used

in several of the laboratories at Wright-Patterson Air

Force Base (WPAFB) for a variety of specialized applica-

tions. Currently, little or no use is made of the micro-

programming capabilty of the machine.

Previous work at the Air Force Institute of Technolgy

-W (AFIT) on this problem was done by John J. Steidle (Ref.

4 6). Steidle implemented the user-microprogramning capa-

bility on the AFET Digital Engineering Laboratory (DEL) HP

21MX and began the study of applying microprogramming to

- application programs. He was able to complete one micro-

program -- a bit-reversal routine for a Fast Fout-ier

3

Ii



Transform (FFT) program. This thesis effort is essentially

a continuation of his work.

Scope

The major objective of this thesis effort is to pro-

mote the use of user-microprogramming by:

1. Demonstrating its benefits in actual working

application programs.

2. Investigating approaches which will aid other

users in future microprogramming tuning ef-

forts.

The result of this and future efforts will hopefully be

improved program performance and extension of the useful

life of the HP 21MX computer.

Approach

The approach taken in this thesis investigation is

outlined in the following steps:

I . A literature search.

* 2. Identification of existing application pro-

grams which could benefit from microprogram-

mi ng.

3. Analysis of those programs to determine where

microprogramming should be applied.

4. Design and implementation of the micropro-

* grammed routines.

5. Analysis of the resulting programs.

4



K

6. Investigation of approaches which would sirn-

plify the tuning process.

A literature search was conducted to gain necessary

background and to learn what related work had been done.

The search revealed that research had been done in both

manual (Refs. 1,4-12) and automatic (Refs. 13-19) tech-

niques of architecture tuning.

Identification of candidate programs was accomplished

by contacting HP users on base. An initial list of users

was already available (Ref. 6:Appendix C). Users were in-

terviewed to determine what application programs were

available and which of these would make good candidates for

microprogramming. Source code of selected programs was

then obtained for further analysis.

Analysis of the selected programs was done using an

activity profile generator program (Ref. 6:22). This pro-

grain monitors the execution of an application programn, and

generates a table and a histogram showing the relative ex-

ecution times of the various routines of that program.

The analysis of the programs identified potential

routines for microprograimning. The microroutines were then

designed, coded and substituted back into the original

programs. The resultant programs were analyzed, and the

execution times were compared with tne execution times of

the original programs.

Based on the experience gained through the above man-

ual tuning process and work of others found in the litera-

5

4i



6

ture search, the investigation of approaches to simplify

the process was begun. The goal of this effort was to in-

vestigate the feasibility of completely automating the

process and developing an automatic tuning system for the

AFIT HP 21MX computer. Each step of the process was

studied to determine if it could be automated, and the

availability of software and algorithms to support the

tuning step was examined.

Limitations

This thesis investigation was limited in several areas

because of various factors. The study was confined to ap-

plications of microprograning on the HP 21MX, although the

concepts could be applied to any user-microprogrammable

computer. The number of application programs tuned was

limited by the number of potential programs identified by

the base users and by the time frame of the thesis effort.

The size of the microprograms was limited by the size of

the WCS on the AFIT machine -- 256 words.

* Order of Presentation

This report consists of seven chapters. Chapter I

provides an intoduction and outlines the problem considered

and the approach taken to solve that problem. Chapter II

covers the survey of HP users and the two applicaticn pro-

* grains found as candidates for microprogramming. The anal-

ysis of the two application programs is described in Chap-

6

I7



ter II. Chapter IV describes the requirements, design,

implementation, and test ot the first microprogram -- a

matrix multiplication routine used for stress calculations

in a wind tunnel control program. The requirements, de-

sign, implementation and test of the microcode for the

second candidate program -- a laser materials modeling

program -- is covered in Chapter V. Chapter V1 discusses

the feasibility of designing an automated tuning system for

the AFIT HP 21MX computer. Chapter VII presents the re-

sults, conclusions, and recommendations of the thesis in-

vestigation.

7



*II. Survey of HP Users at Wright-Patterson Air Force

Base

Introduction

In order to identify existing application programs

which might benefit from microprogranuing, a survey of HP

users at Wright-Patterson Air Force Base was conducted.

This chapter reports the details of this survey -- the or-

ganizations surveyed, the criteria for choosing candidate

programs, and the candidate programs chosen for further

analysis.

Organizations Surveyed

The survey was conducted through telephone contacts

and personal interviews with HP users whose names appeared

on an existing list (Ref. 6: Appendix C). An updated list

is given in Appendix C. Each user contacted was given a

brief explanation of the microprogranuning tuning process

and then asked if their organization had any programs which

might benefit from this process.

Users from eight separate organizations at Wright-

* Patterson were surveyed. All of the organizations have at

least one HP 21MX computer; one organization has four. The

major uses of the HP 21MX differ widely among organiza-

tions, some of the uses being: sensor modeling, electronic

warfare analysis and modeling, materials modeling, instru-

8

I.



I

- - ment data acquisition and processing, on-line data acqui-

asition of real-time telemetry data, wind tunnel control,

and random vibration control.

Because of the diverse applications of the HP 21MX,

the application programs of the various organizations have

very little in common at the detailed level. At a more

general level, however, the programs can be divided into

jI three major categories -- modeling, data acquisition, and

control.

Criteria for Candidate Programs

Because of the large number of application programs

being run on the HP 21MX, some criteria had to be used in

selecting programs for further analysis for microprogram-

ming. Meyers (Ref. 20:29) suggests three criteria for de-

termining whether a function should be implemented in mi-

crocode or software: (1) "the function should be small,"

(2) "the function should be unlikely to change, and" (3)

"system performance would suffer from a slower software

implementation of the function." Although Meyers is ap-

plying these criteria to the design of computer architec-

tures, they are also very applicable to the "tuning" pro-

4 cess considered here, and thus were used in the program

selection process.

The requirement that the function be small is neces-

sary for two reasons. Writable control store is very lim-

ited on most user-microprograimable computers. The AFIT HP

9



21MX, one of the HP 1000 Series computers, for example, has

only 256 words. Table I (Ref. 7:15) shows the control

store options available for the HP 1000 Computer Series.

p - Also, microprogramming is inherently more difficult than

programming in a higher level language, because of the

-"lower-level details the programmier must be concerned with,

such as register and bus transfers, arithmetic logic unit

(ALU) operations, and microinstruction timing. For this

reason microprogramming should be held to a minimum.

The two reasons for the first criterion also apply to

the second, that "the function should be unlikely to

change." Limited writable control store makes program

growth difficult, if not impossible in many cases. The

tv complexity of microprogramming makes the modifications much

more expensive.

The third criterion points to the program's need for

performance improvement. This may be the most important of

the three criteria. If a user feels the performance of a

program is already adequate, there is no need to add ex-

49 pense and complexity to it by adding microcode.

One additional criterion that should be considered is

*[ a program's potential for improvement using microprogram-

4ming. This potential is based on the nature of the pro-

gram. A compute-bound program is more likely to be im-

proved by microprogramming than an I/O-bound program. A

| -plotting program that spends the majority of its execution

time waiting [or the mechanical plotter would gain nothing

10



TABLE I
User Microprogrammability Provisions of HP 1000 Computers

HP 1000 Computer Series M E F

HP 1000 With 4 I/O channels 2105
Computer
Models With 9 I/O channels 2108 2109 2111

With 14 T/O channels 2112 2113 2117

Control Store Space
(micro-instructions)

Total control store address space 4096 16384 16384

Space used by base instruction set 1024 1024 2816

Space reserved for HP enhancements 1536 3584 7936

Space reserved for user microprograms 1536 11776 5632

Control Store Hardware for the User

12945A 256-instruction User Control max. n/a n/a
Store board for user-installed ROMs of 2

13407A 2048-instruction User Control max. max. max.
Store board for user-installed ROMs of 1 of 1 of 1

13197A 1024-instruction Writable max. max. max.
Control Store board of 2 of 3 of 3
L

4

11

4



-o

in performance from microprogramming.

Candidate Programs

Applying these four criteria to programs examined in

the survey, two application programs from two different

organizations were chosen for further analysis -- a wind

tunnel stress control program and a laser materials model-

ing program. The background and general requirements of

these programs is dicussed here.

Wind Tunnel Stress Control Program. The wind tunnel

stress control program, called STRES, is one of several

subroutines used to control the overall operation of a 9-

inch experimental wind tunnel used by one of the Air Force

Weapons Laboratory (AFWAL) organizations -- AFWAL/FIMN

(Ref. 21). STRES is used to calculate the stresses on

flexible rods or elements in the wind tunnel.

A cross section of the tunnel with the rods is shown

in Figure 1 (Ref. 22:Figure 3). A total of eighteen rods

form the floor and ceiling of the tunnel, nine rods on each

4 urface. Each of the rods is connected to ten electro-

mechanical jacks, which are used to bend the flexible rods

to a desired shape. Bending each of the rods provides the

tunnel with variable geometry walls, which allows "testing

larger models than previously possible in a comparable

sized conventional tunnel" (Ref. 22:1). Figure 2 (Ref.

4 "22:Figure 2) illustrates the effect that bending the rods

has on the shape of the tunnel.

12

;,



-. . . . . . . . . . . . .

L

INRWINDOW

LOAD BEARING WINDOW- 1'-

/MAIN ILEXIBL[ WALL (LIMIN!S

6 F~ILEXIBLE FOLLOWERS --

11'
LT JiII

IFLEIIL [LIAEKI ACTUATORS

Figure 1. Wind Tunnel Cross Secti.on

13



-E-1

CYC

41



The rods are adjusted each time the tunnel is prepared

for a model test. Although the rods are flexible, it is

important that they are not over-stressed or they will be

permanantly distorted. The function of STRES is to prevent

this from happening. STRES receives as one of its input

parameters an array containing the relative distance each

of the ten adjusting jacks has been moved. This informa-

tion is used to calculate the stresses and moments on each

rod. These values are then passed to another routine which

automatically shuts down one or more jacks if the maximum

allowable values are exceeded.

originally STRES and its associated subroutines were

written entirely in FORTRAN, but the program was too slow

to allow adjusting of more than one rod at a time. Part of

one routine was rewritten in assembly language, and the

gain in speed allowed the adjusting of three rods at a

time. This new routine was called, quite appropriately,

SPEED.

The rod adjustment process took about 5 ininutes. it

was hoped that by microprogranining parts of STRGS and

SPEED, the stress calculations could be made fast enough to

allow the simultaneous adjustment of more than three rods

-- possibly two or three times as many -- and thus reduce

the total adjustment time. The ultimate goal was to be

able to adjust all eighteen rods at once! This would allow

real-time adjustments during a test.

The stress calculation function met all of the program

15

4



F--

selection criteria, and was considered a prime candidate

for microprogramming. More conventional soeed-up tech-

niques such as reverting to assembly language had been

tried. Microprogramming was a logical next step.

Laser Materials Modeling Program. The laser mate-

rials modeling program is a program which was developed by

personnel at AFWAL/MLPJ (Ref. 23) to model the optical

characteristics of laser materials. This program is used

to calculate the real and imaginary parts of refractive

index, an important measure of laser materials. This mea-

sure is given by the following equations (Refs. 23,

24:1327):
2 22 ,)21'1 - .T , -v

n 2 -k 2 :E:+ o- xS
L ( _V2  )2 y2V2\ 2  24

( vv ) vi ±i'

4~ x

i 2

where:

11 real part of the refractive index

(dimensionless)

imaginary part of the refractive index

(dimensionless)

S0= short-wavelength dielectric constant

i (dimnens ionless)

- strength of resonance (dimensionless)

V. = frequency of resonance (cm

v = radiation frequency (cm-
4 0

Y. = damping factor (dimensionless)

16

I



x = a weighting factor (dimensionless)

V = plasma frequency (cm

Tv = relaxation frequency (cm - )
D. r

The HP 21MX at this laboratory is equipped with a po-

tentiometer board consisting of 32 potentiometers. Each

potentiometer of the board can be adjusted to supply dif-

ferent voltage levels to analog-to-digital (A/D) convert-

ers. The A/D converters are connected to the HP 21MX,

providing digitized inputs of the potentiometer settings.

In the modeling program the potentiometers are used to

provide the trial input parameters for the above equations.

Values for n and k can then be calculated.

Another important measure of laser materials is re-

flectivity. The reflectivity R at normal incidence is

given by the following equation (Ref. 24:1327):

(n-I ) 2
(n,k, and R are dimensionless)

2( 2 2

Once n and k are known, R can be calculated and displayed

on an oscilloscope as a function of wavelength.

An experimental method of obtaining a plot of reflec-

tivity is by using a spectrometer to measure a Laser mate-

' rial sample. The coot.linate points for this meas.red plot

can then be input to the modeling program and displayed

along with the calculated waveform. An example of what a

- - display might look like is shown in Figure 3. By adjusting

the potentiometers, the calculated plot can be adjusted to

17

I-



REFLECTIVITY
PER CENT
100

90 MEASURED

0 8 0 WAY

70

60

i . 50

40

30

20

10

0 5 10 15 20 25 30 35
WAVELENGTH (MICRONS)

Figure 3. Reflectivity of a Laser Material Sample.

.4

18

I



closely match the measured waveform and the corresponding

refra-.tive index spectrd can be calculated. Thus, the

*program functions as a curve-fitting tool.

Li! It should be made clear that there are other comput-

erized techniques for calculating the refractive index, and

that this technique is not meant to replace them. This

experimental method has three objectives (Ref. 23): (1) to

Iq calculate the refractive index of a sample material, (2) to

give a researcher a "feel" for the effects the different

Fparameters have on the spectra, and (3) to possibly aid in

the synthesis of new laser materials.

Although this modeling program had not yet been tested

at the time of the survey, it was anticipated that the

FORTRAN routine used to calculate the refractive index

equations would not be fast enough to provide an acceptable

oscilloscope display. This was the motivation behind the

application of microprogramming to this routine.

The routine met all of the program selection criteria.

The function was small. The refractive index equations

were well established, so there was little possibility o

modification. The function should execute faster in mi-

crocode. Since the program had not yet been tested, there

was some question as to whether or not the function would

execute fast enough in FORTiAN. The designer of the pro-

grain had had experience with similar FORTRAN routines run-t -

* ning on the HP 21MX, and felt confident that this routine

would not be fast enough to provide an acceptable oscillo-

19



scope display if done in FORTRAN. Later tests confirmed

S. that he was correct. Cosidering these factors, the program

was a good candidate for microprogramning.

Conclusions

The results of this survey were somewhat unexpected,

since only two application programs were selected as can-

didates for microprogramming. Several reasons for this can

be given:

*(1) Many programs did not meet the selection criteria.

(2) A Control Data Corporation (CDC) system is avail-

able to most organizations at Wright-Patterson Air

Force Base and can be used for programs which ex-

ceed the capability of the HP computer.

(3) One of the organizations (Ref. 25) had potential

programs, but administrative control of the com-

puters was being transferred to another organiza-

tion.

(4) One pe-son interviewed (Ref. 26) had several ideas

for microprogramming applications, but the pro-
I

grams had either not been written, or were running

on the CDC system.

(5) Some persons may have been hesitant to involve
a

themselves or their programs in this project.

Although only two application programs were identi-

fied, the survey was considered successful. The two pro-

* . grams were "real" operational programs and were good can-

20

-



C-..

didates for microprogramming. Also, the thinking of many

of the HP users was hopefully stimulated toward the use of

microprogramming in future applications.

~i2-

:4

-I-

t~r 21

I



1II. Analysis of Candidate Programs

Introduction

As stated in the first chapter, it is not possible or

even desirable to completely microprogram most application

programs, because of limited writable control store and the

complexity of the microprograimning task. Fortunately, mi-

crocoding an entire program is not necessary to increase

its speed. One study of FORTRAN programs (Ref. 28) has

shown that more than 80 per cent of the total execution

* time of a program is concentrated in at most four to five

per cent of the instructions. Careful analysis of a pro-

gram can reveal, these areas of high concentration.

This chapter covers some of the analysis techniques

and the application of one these techniques to the two mi-

croprograning candidates --- the wind tunnel stress program

and the laser materials modeling program.

d' Analysis Techniques

Several techniques are available for determining whera

most of the execution time is spent in a program (Re:.

*| 4:146):

1) Static instruction analysis

2) Timing calls

4 .3) Logic analyzer

22

UI



4) Activity profile generator

Static instruction analysis involves the addition of

V the execution times of individual instructions in a programn

to determine the total execution times of the various seg-

ments of the program. This method can provide good results

N if the execution is not data-dependent. Detailed knowledge

of the individual instruction execution times is required,

however, and the process is very tedious if done manually.

Timing calls to the system clock can be used to de-

termine the elapsed time between the beginning and end of a

program segment. This technique requires a high-resolution

systemn clock. Erroneous results may be obtained in a mul-

titasking system. Also, there is much guesswork involved

in the placement of the timing calls within the program.

A logic analyzer can be used to monitor memory acces-

ses. if the absolute addresses of the program segments are

known, the logic analyzer can be programmed to monitor

* those addresses, and the frequency of a segment's execution

can be determined. This is an good technique, because it

gives very precise measurements without any interference

with the operation of the computer. It does require the

added hardware of the logic analyzer, and like the timing

call technique, involves much guesswork in determining the

program addresses to monitor.

The activity profile generator is a prograin which runs

in a multitasking system along with the program under test.

40
- - The profile generator uses an exter-nal interrupt, such as

23



the system clock, to interrupt the program under test, and

the point of interrruption is recorded. These recorded

points of interruption can then be used to generate a table

or histogram of the program's activity, showing immediately

the most active segments of the prograin. This technique

has the advantage of easy implementation on most systems.

It does introduce some overhead, however, because of the

frequent interruption ot the program under test, but the

results of the profile generation are not affected. Also,

because the profile generator runs in a multitasking sys-

tem, erroneous results may be obtained as in the timing

call method. This problem can be solved by the correct

setting of program 2xecution priorities.

One additional technique that has been used (Refs. 17,

29) is a microprogrammed version of the activity profile

generator. This technique requires modifications to the

microprogrammed instruction fetch routine to gather the

statistics on instructions as they are fetched from memory

for execution. Since the fetch routine "sees" each in-

struction, a detailed execution profile can be made. The

detail can be down to the number of times each program in-

struction is executed, if desired. Some overhead is in-

troduced, since the instruction fetch time is increased.

This technique is difficult to implement on most commercial

machines, since it requires modification of the instruction

fetch routine in control store ROM. Also, some provision

is needed for turning the profile off under normal opera-

24

g



17 7

tion of the machine.

Activity Profile Generator Program

Of the analysis techniques discussed, the activity

profile generator program was chosen for this study.

Static instruction analysis was ruled out because it would

have had to be done manually. The timing call technique

would have involved too much guesswork, especially in the

unfamiliar application programs being analyzed. A logic

-analyzer was not available, so was not seriously consid-

ered. Modification of the instruction fetch routine on a

commercial machine is something which should be done by the

manufacturer rather than the user. Because of these rea-

sons, the activity profile generator program was considered

the best choice. Also, one such program called ACTV was

available, and had successfully been used before (Rzef.

6:24).

4 listing of the program ACTV and its two subroutines

is given in Appendix D. The subroutine called I'GET was

added to the original program to allow ACTV to run on

AFr's RTE-III (Real-Time Executive-III) operating system.

This routine is available as a system library routine on

RTE-IV systems. Instructions for running ACTV under RTE-

Il are given in Appendix E.

ACTV monitors a program's activity by periodically

interrupting the program, using the system clock as the

source of the interrupt. The interrupt rate in increments

25



of ten milliseconds is interactively input by the user.

The user also provides an upper and lower bound on the

memory addresses of interest based on the load address of

the program. This area of interest is divided into 50 in-

tervals, and a counter is provided for each interval in the

form of an array. Two additional counters are used -- one

for addresses below the area of interest and one for ad-

dresses above. The address at which the program is sus-

pended at the time of interruption determines which counter

is incremented. The number of counts or "hits" in each

address interval can then be printed in the form of a table

and a histogram providing the activity profile for the

program.
'-'-

Wind Tunnel Stress Program Analysis

The analysis of the wind tunnel stress calculation

program STRES and its subroutine SPEED was performed using

the profile data from several computer runs of ACTV. In

order to run STRES on the AFIT HP system, a special test

driver program called SDRVR was obtained from AFWAL/FIMN.

This program provided the needed input parameters to STRES

which normally originate from special hardware of the wind

tunnel control system. For the analysis, SDRVR was used as

the calling prograin for STRES, which in turn called SPEED.

Neither STRES nor SPEED were modified for the analysis.

Listings for the three programs are provided in Appendix F.

S- Tables II, If[, and IV show the resulting activity

26



profile tables for three of the ACTrV runs. ACTV also out-

puts histograms corresponding to the tables, but these were

found to be of little value for the analysis, and are not

shown. Table V is a load map showing the absolute memory

addresses of SDRVR, STRES, and SPEED. The addresses from

the load map are used to correlate the address intervals on

the ACTV tables to the programs.

The first ACTV run looked at the memory addresses from

40531 (all addresses in octal) to 43126, which included

SDRVR, STRES, and SPEED. Table II shows that 10 of the 14

total "hits" or 71 per cent of the activity occurred in

SPEED.

The next run looked at addresses 42604 to 43126, the

range of SPEED. Table III shows that 8 of the 10 "hits" in

SPEED occurred in the address range of 42666 to 42705.

To further "homne" in on the "hot" spot, a third run

was made looking at the interval from 42661 to 43020. Ta-

ble IV shows the 8 "hits" occurred in the range of 42671 to

42703 or locations 65 to 77 of SPEED.

These locations correspond very closely to the range

of LOOP1 in SPEED. With 80 per cent of the activity of

SPEED occurring in LOOP1, the obvious conclusion to be

drawn is that any microprogramming applied to SPEED should

include the LOOP1 program segment.

Laser Materials Modeling Program Analysis

The analysis of the laser materials modeling program

27



CD 00 0 0 0 0o 000 0 c (-00) CDC Dc DC )C D CD

CN 000000000000

-0

C w E-i
13 4J F-.4

C. tC>C0C1(DC ne' C 0 CD0000) ) C) ) C oC) ) ) 00 CDC
J ) C00000000000000D0000000)0000 C C C C C C C C ( C C

C) (=0c000000000000000000000000D D D C C C C C C C C
a) 1 D )C ( DC C DC ~0 0 0 0 0 CDC0CDCDCD ) D0 ) ) D C C C C

g 4 NC ->C DC)C DC C-> ~0 0 0 0 0 C)C)CD 0 ) C C)CDC0D 00CD0DC

Wz 0 Z
44 %.0J

E v-4 (1 2 -

0

4 J 0

-4L Zn
>0C
-4J c )r ir f -- nr q Or l r -- " nr
4J(: . 4UrC e . 4L D " L)C - nC : -- - -

0 r r DDr -r lc - - - NNc)( ,' r )I n% or
0PC )C : : ) - q jr4 - -A 4r4 4 - 1- 1r4

C) . 4 C'J rIn~u~~ r- (') 0f r -4 M' '~. in r- -4 (n' 0r r--4 r) Lf ) r2'I

Cz ()10r4-4C - , 4V :)Mk C -NI - rr

0 C n n D10 -r-r C - 1 j(NC1 f)r)* V i)Lr 28 ) ,

I4 r DC )C : :)C )- - -AH - - 4- - 4 A- q H - -



C) (N (N cN (N ( (N N N N (N N N (N 4 121 in) in) i) N r- N o~ Co C0 CD : C

0~ 0 0 0 0 0 0 0-40r-4 0 0-A -4 r-0

0D r4 0)C 0000 000 0D CD4 0D 000 CDCD 1 CD DC nC )in toC)C) CC
C, f- DC DC C >C)C )C>C -C DC 0N00Go0O oCDoo Co 0 o CDC)CDC:
(= Oin C)C)C)0 COC ( C C)CDin C>CDCDCNC)CD N CN C C C C

E-4

(-N W(N'Tr nI -4'rC O- nC r-4 N in-4rr- ( nt

r4cl n r- r-4 Mi r- -4 re in r- .- 4 M In t- -4 M i r- r-4 Ml ul r .- A rn MI

r- r- 0- C3 -4 - 4 N N M M 'TJ -I vAL in in N Nc 00 .-- t-c )c -4 r-

r- -4 C I N "4 Nl I N ,-4 Cl 12N I lL N C- Nl " N .-4 (N ul q (71 4 l L'ff (1

k.0 N- 00 0 C)-4 (N (' vi L in N r- co 0C r-4 (N en '' u") in r- .,o a) 0l '--(
(N (N (N(NMC C r m~ m l ff l en Cl m l m l 'r P v 4 VP IV VJ'I L" inL

29



LAv LO i LA) LA Ln LA) LA LA Lr) L) -4 ul r- - r- r- r- r- r- - r- r- r- co

0
4-4 Z

0 0

U)tI
C)- CDC )C )C )C C DC )C )C D )' )C DC>C

C) CD0 ) ) D D C C C C C0 C)CDCDCDCD0 ) 0 ) ) C C0C C

0 2 ) C : )C)C DC DC DC)C DC )C )c )C )C )C )C
-4 w C C C0C C00 C C000300C>000D0> C C CDa000)000C C

CDC ) UC ~00 00000000000)0D00DCD00C)CDCDC)C)C)0 C00D
H DC DC DC DC DC)C H0 O 000 0OC)CDCOC)CD0D0000000C C C

H )c - c ) Dc c-c : c D4 L-)000O0000LAL0O00o0O c D 00cLA i

>1 r-4

04J L

t4~ 0

14 CN
0 ) q -0C0n Nr T 4% nC N~i r~o - z -4' M C L -4r- '

= 0 k0 o t'.0 o '0 "0 "Dk0 %D~ "0 o N- N- N- N- N- N- - N- N- N- N-
~0 F-(N (N (N CN (N (N N N (N N (N (N (N (N cN (N N N N' (N " (N (N (N

w 000000000000000000000v000v0-Tv 1 Ir qrI~ qq r r ~rq
0 )C C DC )0C DaC ) >C DC DC DC )C )C

(M-P- O( D4)C -Vr4: n DL)Nr cr 4% : OC l

03



r-r-C DC >C )C C >C DC DC .- C DC DC )C )C

LnL 3C )C D( : DC DC 0C >C C : )C 0C DC
w o -3CDCDC C C C C COD O ( C o C D D D D DC C D DC,

CN"C DC DC C DC DC DC )C DC D0C )C : :
maa CD C) C CD C o ooD CDo oooD Co CoC)C 3C DC DC DC DC DC

CD 4- C-I CD CD4 .-3 CD4 CD4 .-4 CD -a (D .-1 CD4 CD4 ,-4 C-4 C -4-4-4--D4C-CDC

CDC C DC DC DC DC DC)( DaC DC 3C C DC
C) > D D D C C C C C3COC)CDC o oo C DC DC )C D a C:)C)C
OO(D DC)CDCDC)C) ) D D O D C C C o C CpC)CDCDC>C)C)

CDC D DC D OC C )C )C) O OD O OC D DClCDCDC D C C C
C00 (= C C C C C :: C C C C C ) D ) D > D pC>C>C)C)CDC)C

U

1-4

E-4

O- D( >C >nC)C 0)C 0) 000-0C0r-4 1 -4 - 4 -4 -4 -4 .-4 -q r-

, : -410 ( Q C) o n Cq r'- qz -4 1.0 M 0 IC) N r- "T -4 1.C( C) l (V r- f I -4 1.0

r- C) 0 0D C) 0 C 0 0> (D 0C0 C C- D-A-4 ---- 4 -4-41 - -4r-4 r-4-

('JN N rn nM ( ) n re M (,q (1) c ) f) I (n M ff (1 M ~ n Lf)Mff 1

-: -W 1,-T 44 _ q C I 'l -1: T T T qT Ir I z"I W IT IT Iz q

C C C ) )(' 3 DCDC C D : C D C)C C ) DC)C 31l )C

kIr )- n n% -w : 4N - -rL or )-



U '-4 -4 -4 .- 4 r4 r- a -4 -A ' "; 'V 'I 'IT ' ' %r ' *4', .:r lcz stT .. .. 'IT

Ln Ln LA r) V) l o4 I LI)~ r- r~- r- N r- r- N- - N- - N- N- - N- N-
1-) OD 00c (0 N r-4 X ) L Lr A LA LA LA Ul LA LA Ln LAI LA LA LA) LA) LA L

0

0 41 E-4

C C) 00C00DC)C)CD0 0 0 C)CDCl(DCD D0o ) ) C 0 C C

4 -4
0

cz~j .- EQ4

r-4 a E-4
:11 0 -

>'J- ,-d
-4

0j%

u CN z

00 0 .p .N .. N. N. N N 0 N N N N ciN N N N N N CN N N N N N 1 N

0 > w (N r' D' 1.0 N % a 01 0o -~ (N r- r- ,l r 0 N- CO O- 0 r- (N r- r- - 1

z

4w-

32



r- - - -- - - - r r O 0 c 0 0 0 Ifo co 010 0 00C C 0 0
LA LA) LA Ln LA Lo Lo IA L) IA C N N (N N N CN (N CN 0)C 0 00 0 0) C0 0

ODO DO 0 DO 0 0 Y lO N M N MM (O )0 )C 0

000000000000000000000000000.. . . o
0000000000000 000400000000

000000000000 D D D D D D )00000000)C: c> C00:o00D
000000000000000000000000000)CoC)C>C: oc)CDCDC o ) :)C>C
000000000000000000000000 D D D D D ) > D ) D ) ) 00:

.Z-C)o D C)000000000DC000000000000000> C c c c)CDo :)000C

~~E-4

fnLn1- 4ff O -r- n r- 4rn - -r4mL -r4fn r-oooooonoo or-

N -r-r--r-r-T U o o D o o o o oor-r-o ooD-oo- 1 N"CNr

r-r r I-r -r r - m - r C rC ) DC C ) )C)0r

000000000000000000000000000NCNrn(nrnm n r c f m( r

v T Wv q10vd.v I Irqq T I w T-0v-V-W- - T3v3or



TABLE V

Load Map for SDRVR, STRES, and SPEED

COM 40002 40530
SDRVR 40531 42110
STRES 42111 42603
SPEED 42604 43126

.MAP 43127 43222 751101 24998-16001
CLRIO 43223 43231 750701 24998-16001

ENTRY POINTS

*SDRVR 41673
*.DLD 104200
*.DST 104400
*. .MAP 43127
*EXEC 12446
*CLRIO 43223
*STRES 42244

*FMP 105040
*.ENTR 37201
*FLOAT 105120

K *SPEED 42611

43



subroutine called CALC followed the scheme that was used in

the analysis of the wind tunnel program. A special driver

program called CDRVR was required to provide the needed

. input parameters for the routine CALC. Listings for the

two FORTRAN programs, CDRVR and CALC, are in Appendix I.

As with the previous program, three activity profiles

were run. Tables VI, VII, and VIII show the resulting ac-

tivity profile tables, and Table IX shows the load map for

CDRVR and CALC.

The first run included both CDRVR and CALC in the area

of interest, from location 40002 to 40651. Table VI shows

a large concentration of "hits" in the address range from

40233 to 40354, somewhere in the middle of CALC. The nuin-

ber of "hits" in this area is 33 of the total 48, or 69 per

cent.

The second run included CALC only from location 40142

to 40651. Table VII shows two areas of relatively high

"hit" concentration. One large area from 40266 to 40347

contains 23 "hits" or 48 per cent of the total. The other

smaller area from 40223 to 40250 has 8 "hits" or 17 per

cent of the total.

The third run covered these two areas more closely

fromn 40214 to 40365. Table VIII still shows the two areas

of concentration, but within those areas, the "hits" are

fairly evenly distributed. One exception is the interval

from 40332 to 40335, which has 6 "hits", a relatively high

concentration. A mixed FORTRAN/assembly listing shows that

35



CD C) C C:) C) CDI C ) CDO C) O C) -4 -4 r-4 0 r C 0 o n

0

U4-)
0 >C )C )C )0C DC )- DC DC D0NC -

>w -4C )0C )C 4C >C )fhC)C )C )14-rC W..14%
w a)J E-4 )C )C )- )C DC o DC )C - *C V-' 4

JO 4 4 :: C C C C 00-0C C C C-4 ()0 :)C: 0 C) 4NKrC ) -*'40 -A .

> -4

di 0

S -'-I L'

>1 0

4 .J 4J rz
"-4 0
> (

4- 0

r)C :)c : 0000 000 - -4 -4--4 -q ~(N 4C(-4NNr-4 N C- N f

oC 0 0 01 0n 0o r- 4 '-4 M IW Ln (o r- c) -4N (n (N (n %o r, )-

M CH (N n1 '1' c-) C) C cl 0D C) (N C:) C) ifl CD C C:)a 0 H (N 0' C) LDAc

z

36



r- I00 000 00ci 0 n00)0O0-0-0D( ( 45DDC)CDa:DC
ko 0 ID 00ko00 .oin", I C0C' 0 r4 )CoC,00-- C o :)(DCD

-4 1-4 -4 -A -4 -AN CV(1 KIooooIoI oooo'.o'nInLnLr C
DoN a a o a iom - - o n f)Inr-t-r- ror t r r r I C

r- r-r -r -I -r oc oW0 0C O0 oO OO 0C oMC

CD if ) D )0D0 ) D C0 - C C r-4C-4 CD -4 DCDCDC)C)CDCDCD 11

CDP 'cr CD C.0 CD C0 CD~ CD C) -4 C) CD r- CD -4 CDj -) CD Il C 0 C)4 CDC C)I C) 0
CD It) CD0 CD CD ('D C) CD C) '04 CN C0 1-4 C> 'P4 CD) r -4 C>CD N 0C CD LCD CD0 a> 0

C)f DCC ) C) CD CD 'P CD CD 'P CD i) CD) L) Cf) LA CI) C.0 100 C) C) C.0 C.0 w
0:) 0rC : 0 D CD 0 I= -1 0) CD 0 CD - 000 -1 00 CD CD c) 0> CDcDD

( ) r) 4,0 r- C) 'P 'P 'IT In 'P 'P CD'P In In r- CI) -4) LC4 U) Ln. W0 f-0 - '_.0r

0: 0D 00 0 0 0D C 0 C 0C 0 D 0) CD 0 0 0 CD 0D 1 003 C) C) C , C.

1.0 m qz) oi to r- c> r-4 'P mn 1 In Co 0- r-i N m ' r 'P ) .o r- L= -- 4 0 -q

C) CD (N1 () C~) CD~ C:) (D) C) CD) c'1C- ) C CP CD 'P 'P I'D CP 'P C) 'P CP (D 1 I-_ II)

37



r -N N - r r r- 1-mk o C nC - A %D- -D m m ---- v

C N (N ko ko 00 C 0 CD ~ CD 0 C O m %D (N co co C1 C- m m 0000 )C)C C
F: C ) )C)-1r4 4rr4( N0 N()M1"I D r--[--r- 00 o c c

0

UAU
4::J E-4

Un C)r )r DC )q-40mC Dr DC C f -C )C
09 r- DC )C DC )L)1 - DC)C Tl 4C -NC - : DC

0 0r-C).: C NW > ) 0 o -4r-CNC 1-1 4 -4 -CD (N0% C r C 0C C
0-0 n )9q D- 000 CDC N - lC) C)-4 r-r-L ax 0C -00DQC C

co. C.4 r-C -C )C qu oC )r-V OO )C -C DC )C
C* qr DL )i)C )C - o- )C) Lr 00 NC w nQ "C >C

-~4 0 -

a4 z

'- ~ 4 -J0 C) U

,-4 (N (N (11 r-A 1 (1) n -.4r- i(N .-4

U 4J CI4
0

CN

frir 0;
W4 c)

00 'I
0 D Nr40r oL I Nr4C r DL wmC qC -k ) r)(

04'I -) 00000r0C0- 000M t n L0%D0r 00- " 00Vq* 00 0r-C)-
CL - - - - 4N N " N N N " Nm rle )mC)4~

0 - D0 c C c c C 0 C oCDCD(=CDc0 C: 0 ) D :: C C C c C) :
4 - I z z ~ c cr'rI I r1 v v q T v . r"

4T CDaC )C )0C )0C )C )rDC )C )C DC :
C) N 4 ) 00tD0 00r-00 U "Tm0N 1O C r- 10 0-0f

00000L D D -00r-0N000 L 'D - ) 4 M0000v n 0 r C

z

38



Ln~~~~~~~~ L- -n -n m --r -r Dc Dc>c Dc Dc Dc D

4v v ov D D D .0r- m m m Mr- - r4 -4r- - - - oq 4 1 4
CDC )C N V% D%0wL ~oom mamamam mm

0oco00 cocoODc00 OD 0 c00D00 ococo00 00 o mco00 c c
. . . . . . . . . . . . . . . . . .O.O . . .O .

C)C)00LA ( C 0 00(nCDa)CLCD C ( C C 0 00C)CDCDCDC-
C> a D D 00 C ) 0C) - r4C) C C ( 00 C C CD0DCDCD0 CD CDC) C

* DC Dr )C Dr - )C COOA00C C400C) rJ D OO C c) ooDc) D c c r
CD C 00 C)0n(DC)0OM O o ) D C L ( C C)00CDCDCl ) D,> )

'-4

>z

IiCD -- % 0 :re C -4C r i .-Aa r 0 - 0 nCN1 r -

:r :v 'dw w -w -o- -,!r .. u Ln tn LA tn Ln LA Ln LA '.9 '.9 k0 '0 w. %o0 %D0 '0 r- r-

C-4 CN (n en q. c') %0 r- ( 1-4 CN Ni (1 WLnk - 'A CN m -W~ L %0 LA

* : ,-,m- ,wu 6L nL L nL n% Dww% ok or

39



~m~~t(~mLLDr--Ar--4

44 0
0

V) U)

0~ z -4o )mC C D- DC (nrAa C D )C 0 %D %oo. eCD0C)000 DC.D c o
%D ) o CD D CDm CDC) t0 m 000C ) 00%D w > aC) ) C

H C 0~D 0 C0 ~~l000-,4 U 0Ifl0O

> Q) 0
Cz -.-4'O

ciQ 00 CD U
4 w E-4

:)4 fl0 -

.4J) 4J X4
--4 0

(D z
0 T

C> IWr 0cJ~ N C M C' -J r-C Jn MDr-CV r- MC) M % -i
r- - NC M' f f %D %-0 0 00 0 0 0 Wrr-r-CDC)00 r- P00 04

(0a 00 o0 000 0000 000 004 00 , qc 4NNcv< , jr4c4 nmr ne n

w 0-. E- D0C )C )C )C )C C )C )0C C )C )C

'-4

CD -4 -"L DmwHl -NL ) - -"L = n%

04

> nt -mmC ANmR nwr )r4Nr TI



CN N O O r r r r-r- r4 -4r-q -4 -4r- rA 4 q -Ar-r--r-r-4 r-r-4 C

.- 40jko0 n00 0 0O0000 c ot . 010k oDk0 ow k0w o l

%. % 00 - k 00o o 0 00O 0000000 000D00 0D00 C
- nLf ( 00.o r r r r-r-r-r- - , - 0 r r 0r r-r0r-O- - - -D

. .o o .O. . . . . .0. .O . . . . . . . . . . .

-1C )C - aC )k )C ~O 0 0 I O 0 (DC000CD0 CpC0 ) ) CO0 C)a
m C )k : )C >C 00 D oo o O0 0CDC)C)Cl ) ) ) D C C '.C oI r mC> o C ) %r i0 m > )- C 0 C>C00DO0)CDCDCD 0 D o C C C %
CC )C naC)ak )C )CDC DC )C ) )0C )C .

m000 000 0000 aCDC r4 0 0 000 0C ) )C 000 C) C )00w

~. . .~ . . .3 . . . . . . 4 . ~ . .

r-

E-41

" = Dr4 r OC o- C - U or44rr Nr



TABLE IX

Load Map for CDRVR and CALC

CDRVR 40002 40141
CALC 40142 40651

ERRO 40652 40760 750701 24998-16001
SQRT 40761 41107 751101 24998-16001
.OPSY 41110 41147 750701 24998-16001
CLRIO 41150 41156 750701 24998-16001
..FCM 41157 41173 750701 24998-16001
REIO 41174 41276 92001-16005 741120
ERO.E 41277 41277 750701 24998-16001
.PWR2 41300 41332 750701 24998-16001
.DFER 41333 41404 750701 24998-16001

- ENTRY POINTS

*CDRVR 40076

*EXEC 12446
!jI, *CLRIO 41150

*CALC 40147
*.FMP 105040

*FDV 105060

*.FAD 105000
*.FSB 105020

*..FCM 41157
*.MPY 100200
*.DLD 104200
*.DST 104400
*.ENTR 37201
*SQRT 40771
*FLOAT 105120
*ERRO 40652
*REIO 41200
*ERO.E 41277
*.OPSY 41110
*.PWR2 41300
*.ZRNT 02001
*.ZPRV 02001
*.DFER 41333
*$LIBR 12665
*$LIBX 13463

fl 42

I;.41~



this interval immediately follows a floating point divide

instruction, which is the slowest of all the floating point

instructions. This accounts for the high concentracion at

that point.

Close examination of the CALC listing shows that all

the "hits" in the specified range in Table VIII occur in
the "DO" loop of the program. Furthermore, the "hits" are

concentrated in the area of the loop where many floating

point operations take place. The microprogramming effort

in CAfC should be concentrated on this loop, microcoding

* the entire loop if possible.

vUb Summary

This chapter covered the analysis techniques for

finding the time-consuming areas of a higher level or as-

sembly language program. Two programs were analyzed in

detail using an activity profile generator program. The

first progr-am, the wind tunnel stress routine, showed a

high activity concentration in a very small loop. The

second program, the laser materials modeling routine, had

its afea of high activity also in a loop. The loop of the

second program, however, was much larger, containing sev-

eral lengthy FORTRAN statements. Both of the loops of the

two programs could be microcoded.

43

Ki



IV. Requirements, Design, Implementation and Test of a

Microprogram for the Wind Tunnel Control Program

Introduction

The previous chapter covered the analysis of the

stress calculation routine (STRES) for the wind tunnel

control program. This analysis showed that about 80 per

cent of the program activity in the assembly language sub-

routine of STRES called SPEED occurred in one loop segment

of SPEED. This chapter covers the detailed requirements,

design, implementation and test of a microprogram called

LOADS to replace this loop segment in SPEED.

LOADS Requirements

LOADS is the microprogram designed to replace the loop

segment labeled LOOP2 in SPEED. LOOP1 is actually the loop

in which most of the activity was found to occur, but it is

nested within LOOP2. Because of this relationship between

4 the two loops, it was decided to include LOOP2 in the de-

sign of LOADS.

First and second level data flow diagrams (DFDs) (Ref.

30:Chapt. 4) of SPEED are given in Figure 4 to show the

relationship of LOOP2 to the rest of SPEED. As shown in

the diagrams, SPEED performs three major functions -- coin-

putation of loads (forces), moments, and stresses. LOOP2,

along with its inner loop labeled LOOP1, performs the load

44

- ,a . " ' " " " -" -" .. .- -i ,L . U i- r -. -.. .a -. i .R..- -' m ,m -- --a



DDF COMPUTE COMPUTE CMUE LA

Figure 4. Level 1 and 2 DFDs for Subroutine SPEED

.GE

DD LMN

4 -~~~~O DFigr 5D~.EDDfrLAS irporL

4AD

MUTPY RDC
ELMNSPOU 4 ODLA



74

computation function. The parpose of this function is to

calculate the loads on the individual flexible rods of the

wind tunnel. Calculation of the loads is an interim cal-

culation to computing the moments and stresse s on each rod,

as shown in the second level DFD of Figure 4. The calcu-

lation of the loads consists of a simple matrix multipli-

cation.

Matrix multiplication is defined as follows (Ref.

31:343): Given A=(aij), an in x n reatrix and B=(bij), an
iJ iJ

n x p matrix. Then the product AB is a matrix C=(ci')
ij

whert:
n

ci= k a ikb ik

and the matrix C is of order m x p. The two matrices in-

volved in the load calculation are called DDFL and YZT.

DDFL is a 13 by 13 matrix, which represents the in-

verse matrix of the deiA'Lctions of a single wind tunnel rod

due to a unit load applied to the rod at one point. There

are 13 jacks attached to each rod, giving 13 deflection

points and 13 points to apply a unit load.

YZT is a 14 by 1 matrix which represents the deflec-

[4 tions in inches from the neutral position of the 13 jacks

attached to each rod. YZT(1) represents the point at which

a rod is attached to the tunnel wall, and thus always has a

deflection of zero. YZT(2) through YZT(4) are the deflec-

tions of the manual jacks used to position each -.

46

I1



YZT(5) through YZT(14) are the deflections of the ten

electric jacks used for the same purpose. The values for

- the electric jack deflections are actually the periodic

readings from potentiometers attached to each rod (one po-

tentiometer per rod). The first element of YZT, YZT(1), is

not used in the matrix multiplaction. This makes the 'xZT

matrix effectively a 13 by 1 matrix, satisfying the dimen-

sion requirements for matrix multiplication.

The result of the multiplication of DDFL and YZT is a

13 by 1 matrix called LOAD. LOAD is actually a 14 by 1

matrix like YZT with the first element set to zero, and the

remaining 13 elements are the result of the matrix multi-

plication. The reason the YzT and LOAD matrices have an

extra element is because of requirements in other routines

of the wind tunnel control program. For the purpose of the

matrix multiplication, they are 13 by 1 matrices and will

be referred to as such.

The data flow for the matrix multiplication of DDFL

and YZT is shown in the DFU of Figure 5. This DFD is a

4 further breakdown of the "COMPUTEr LOADS" "bubble" of the

DFD of Figure 4. The data flow here is very simple. Ele-

ments of DDFL and YT are obtained from their respective

* matrices. The two elements are multiplied, and the product

is added to the appropriate LOAD element. The control in-

*i volved in this process cannot be shown in a DFD, but is

- described in the following structured English (Ref.

30:Chapt. 6) requirements specification of the DDFL and YZT

47

4"



matrix multiplication routine:

I
REPEAT UNTIL NO MORE ROWS IN THE LDFL ,MATRIX

SET NEXT ELEMENT Oe LOAD MATRIX TO 0

REPEAT UNTIL NO MORE COLUMNS IN THE )DDFL
MATRIX

MULTIPLY NEXT DDFL AND YZT ELEMENTS
ADD THE PRODUCT TO THE CURRENT LOAD
ELEMENT
POINT TO THE NEXT YZT ELEMENT
POINT TO THE NEXT DDFL COLUMN

END
POINT TO THE NEXT LOAD ELEMENT
POINT TO THE NEXT DDFL ROW

r END

The matrix multiplication consists of two loops, one within

the other, as shown in the above structured English speci-

fication. The inner loop corresponds to LOOP1 in SPEED,

and the outer loop corresponds to LOOP2.

Design of LOADS

The basic design of the LOADS microprogram is shown in

Figure 6 in the form of a structure chart (Ref. 30:Chapt.

7). This chart is the result of transform analysis (Ref.

30:Chapt. 9), which is a design technique that builds a

systen around the concept of data transformation. In the

case of LOADS, the data elements of the DDFL and YZT ma-

trices are transformed into an element of the LOAD matrix.

This transformation is shown in the DFD of LOOP1, from

which the structure chart is drawn. The reader should note

that the data names on the structure chart are for design

purposes only and do not actually exist in the microcode.

F' - Data at the micro-level exists in registers, and the ap-

48

-. - - - - -- - - ---.--- ---.---.--- -+-



uf z
=) 0w

014 4

E-1 U)

00
z 0

4J
r-4)

0

4)

49

.44



-f -7~ Y -. -

* plicable registers used for temporary storage are shown in

parenthesis below the corresponding data name.

If LOADS was to be iinplement,... in a higher level lan-

guage, the design of the routine would essentially be done.

It is a simple process to code a FORTRAN or PASCAL program

from, the above structured English using the modular design

of the structure chart. Implementing the routine in mi-

crocode, however, requires the design to go to an even

lower level. The following algorithmic steps take the de-

sign to a sufficiently low level to write the microcode:

1. Read calling parameters -- addresses for DDFL,
YZT, and LOAD matrices -- from memory ar l store
into their respective scratch registers.

2. Store an outer loop count of 13 into a loop
counter register.

3. Store an inner loop count of 13 into a loop
counter register.

4. Set the current LOAD matrix element to zero.
5. Read the current DDFL matrix element from memory

into the A/B registers.
6. Read the current YZT matrix element from memory.
7. Call the floating point multiply routine.
8. Read the current LOAD matrix element from memory.
9. Call the floating point add routine.

10. Store the result into the LOAD matrix element.
11. Increment the DDFL address register.
12. Increment the YZT address register.
13. Decrement the inner loop counter register.

4 14. If the counter does not equal zero, go back to
step 5.

15. Increment the LOAD address register.
16. Decrement the outer loop counter register.
17. If the counter does not equal zero, go back to

step 4.
* 18. Return to the calling assembly language routine.

implementation of LOADS

The process of implementing the design of LOADS in

microcode is straightforward. Use of the HP microasse'mbler

50

.6 .



(Ref. 32:5-1) makes the coding very similar to coding in

Iassembly language. The resultant microprogram is listed in

Appendix G along with the modified version of SPEED called

MSPED, required to invoke the microprogram.

Some of the limitations of the HP architecture have a

significant effect on the microcode. Because only one

F register is available for subroutine return addresses in

the HP 21MX M-Series, subroutine calls cannot be made from

other subroutines without losing the original return ad-

dress. This is a significant problem when using control

store ROM routines such as the floating point multiply and

add routines required by LOADS. These routines call other

ROM routines, so they cannot be used directly. One way

around this problem is to duplicate the routines in WCS and

"jump" directly to and from these routines. Duplicating

the routines is no problem as all the ROM routines are

documented (Ref. 32:Appendix E), but they do use much

valuable WCS space.

Another problem with using the ROM routines is that

they use many of the available scratch registers. For ex-

ample, the floating add and multiply routines and their

associated subroutines use ten of the twelve available

scratch registers. Scratch registers are very important

since data cannot be stored in WCS in the HP 21MX. With

the routines in WCS, the register usage can be reorganized

somewhat. Doing this in LOADS freed two more registers.

51



Testin_

The plan for testing the LODS microprogram consisted

of two major phases -- a module test aid a system te:3t.

The module test was conducted on the AFIT HP system using

the special driver programn SDRVR to drive LOADS (via STRES

and SPEED). The purpose of this test phase was to show

that LOADS would produce the same output as the as3embly

langlage code segment replaced by LOADS. The system test

was run on the AFWAL wind tunnel control computer. The

purpose of this test phase was to show that the LOADS mi-

croprogram would load and execute correctly on the systen

for which it was designed.

Module Test. The module test plan consisted of two

parts: (1) verification of the program output, and (2) de-

termination of the speed improvement of the microprogram.

Imbedded in the data and assignment statements of SDRVR

were known inputs for the subroutine STRES, which would

produce known stress and moment calculation outputs. The

goal of this part of the module test was to duplicate those

outputs using the microprogrammed version of the program.

HP's Micro Debug Editor (MDE) (Ref. 32:5-21) was used for

-*' loading the LOADS microprogram into WCS, and for debugging

4 the microprogram. Debugging consisted of setting break-

points within the microprogram and analyzing register con-

tants when the breakpoints were reached.

* Determination of the speed improvement of STRES and

SPEED through the use of the LOADS microprogram was accoin-

52
I .



plished through executive calls to read the system clock.

It was necessary to call STRES (and therefore SPEED) 100

times from a loop in order to get accurate measurements.

The timing tests showed that the microprogrammed version of

SPEED (using LOADS) was 36 per cent faster than the orig-

inal version. Since the loop replaced by LOADS represented

80 per cent of the total execution time of SPEED, LOADS was

actually 45 per cent faster than the loop it replaced. The

- speed increase in SPEED made its calling program STRES 31

per cent faster.

The 45 per cent speed increase (almost two times as

fast) is somewhat less than the gains of six to ten times

(Ref. 5:98) or two to twenty times (Ref. 9:49) reported in

the literature. Close analysis of the assembly language

for the loop explains the difference. Totaling the in-

struction times for floating point and non-floating point

instructions shows that 46 per cent of the loop's execution

time is spent in the two floating point instructions.

Since the microcoded version of the program uses these saine

floating point routines, no speed improvement can be made

to 46 per cent of the loop, and the best possible speed

improvement to the loop is 54 per cent. A 45 per cent

speed increase is therefore, not only reasonable, but quite

good.

No major problems were encountered in the module test,

* although several small problems we're encountered. One

problem was a logic error in the loop structure of LOADS,

53



. wnich made it attempt to write to main memory beyond the

bounds of the driver program. This situation caused a

system memory protect error detected by the special memory

protect hardware on the AFIT system. This optional hard-

ware feature showed its usefulness in protecting memory

from an untested microprogram. As one of the HP manuals

warns, "execution of an unproven microprogram can have un-

predictable and undesirable results, including the de-

struction of the system" (Ref. 32:5-16). Once the logic

error of LOADS was corrected, the program produced the

correct output, and the module test was successful.

System Test. The system test of LOADS consisted of

the same two steps as the module test -- output verifica-

tion and speed improvement. In this test, however, the

inputs to the program were from the operational wind tunnel

control system hardware, and the microprogram was driven by

the operational software. Also, the speed improvement

measurement here was concerned with the number of addi-

tional rods of the wind tunnel that could be driven.

4 Two problems were encountered in the system test. One

problem was loading the microprogram into the WCS of the

wind tunnel computer, and the other was executing the mi-

croprogram after it was loaded.

Loading the microprogram was a problem because of the

difference in operating systems of the AFIT and wind tinnel

d machines. The AFIT system uses a real-time executive sys-

tem, RTE-IIf, and the wind tunnel system uses an older disk

54

4



operating system, DOS-IIf. Microprogramming support soft-

3ware was available for the DOS-1I1 system, but had not been

procurr d for the wind tunnel machine. The problem was

solved by writing a special WCS loader program in assembly

language using the I/O instruction sequences given in the

WCS manual (Ref. 33:3-1). The listing for this program

called WCSLD is in Appendix H. Initial attempts to run

WCSLD on the wind tunnel machine failed. The problem was

traced to a bad WCS board, and the microprogram was suc-

cessfully loaded to a new board. WCSLD will not run on an

RTE system with the menory protect option installed because

of the direct I/O instructions used.

The next problem occurred in executing the LOADS iui-

croprogram after it had been loaded. The program seemed to

work, bet zeco values were returned for the stress calcu-

rations. This indicated that the microprogram was not be-

ing i-od by the assembly language instruction in SPCI)ED

This problem was traced to an imp-oper combination of ad--

'i-dr-s jumpeljJr wires on the WCS board. Removal of two jumper

4 sires fixed this problem, and the program ran successlally.

The speed improvement measurement was made by inter-

actively increasing the number of concurrent rod adjust-

* ients, and monitoring the adjustment process on a special

light panel. The light panel readily indicated when the

program bogged down because of too ,nany concurrent adjust-

* - ments. The test showed that four rods could be adju'.td

reliably using the microprogrammed version of the ,rQojrairi.

55

-I



- The old program could only handle three reliably. It was

felt that the microprogrammed version was probably close to

five rods, but this could not be validated.

Summary

This chapter covered the requirements, design, imple-

mentation, and testing of a microprogram called LOADS, de-

signed for use in the wind tunnel control program. The

application of the microprogram showed a 31 per cent speed

improvement in the stress calculation routine of the con-

trol program. This improvement resulted in a 33 per cent

operational improvement of the rod adjustment process of

the tunnel, by increasing the capability from three to four

r concurrent rod adjustments. The loading and execution of

LOADS on a DOS-III system showed that microprograms can be

run on this system without microprogramming software sup-

port.

.74

56



r°,.- -.,..

.: V. Requirements, Design, Implementation and Test of a

Microprogram for the Laser Materials Model Program

Introduction

As discussed in Chapter II, the laser materials mod-

eling program is used to calculate the real and imaginary

parts of refractive index, an important measure of laser

materials. Chapter III covered the analysis of the routine

called CALC which performs this refractive index calcula-

tion. The analysis showed that microprogramming could be

applied to the one loop in CALC. This chapter covers the

requirements, design, implementation and test of a micro-

program called MCALC to replace this loop in CALC.

MCALC Requirements

The real and imaginary parts of the refractive index

are given by the following equations:

2 2 v2
oi 4Tpv V X

2v 2 I

V 2

nk Z v 1 + 1

' 2 2 ) 2 2 V,2
I-V 3-.

These are the same two equations which were given in the

CALC requirements in Chapter II. The reader may wish to

* refer back to that chapter for parameter descriptions and

57



dimensions, although they are not needed for the discussion

here. CALC receives as inputs all the parameters required

to evaluate the two equations. Once evaluated, the equa-

tions can be solved simultaneously for n and k, the real

and imaginary parts of refractive index.

The data flow for CALC is shown in the level 1,2, and

3 DFDs in Figure 7. Data flow naine definitions are given

in Table X. The first level gives the overall function of

CALC -- to compute n and k. Level 2 divides this function

into the two major tasks of (1) evaluating the two equa-

tions and (2) solving these two equations simultaneously.

Level 3 further divides the first task into four subtasks.

The second task of solving the equations is of no further

interest here, since this task is not to be microcoded, and

a level 3 diagram is not given.

The level 3 diagram of the equation evaluation task,

however, is of particular interest since it provides the

basis for the MCALC microprogram. As noted before, this

diagramn divides the equation evaluation task into four

subtasks. The requirement for MCALC is to perform the

summation part of the equation evaluation as shown in

"bubble" 1.2. This "bubble" then becomes the first level

of the MCALC DFO shown in Figures 8 and 9.

The first level of the MCALC DFD shows three inputs --

F, B, and F2. These inputs consist of all the equation

parameters required for the evaluation of the summation

parts of the two equations. One additional input to MCALC

58



B OMUT

F OTHER TERMSk

COMPUTCOMPLTE

B n2-k2 2k2 QUATIONS

"QU ' 
EQUATIn

I2 2

5AD

F TE EM



>1

--- 4

4J

C) 4 -, -~ -.C~

0 0ca) 3 -4ci C14 -4 -4 N -1 N
-4 qC -q tn -- tDx -- ~ C

in > 0 Co - Cco ~ M c M 0 0 0 4

C1 e-4 - - m' m Z)L -
4- r- ,-Ir- - - i CJ OD - ( ma%,-f C'

- - - - -

X0 mm mm m mm

C* (qm w L
4zc a) 0

P4-4 1 1 4
c. ci () >o Uo c) .-4

> 4441CC. i t

0 W 04 d (oC
(a rf 0 a) *-i 0 a C4 U-

4J 41 U 4 f --I44 U) 0 L-i 0 x d) U
04 )O 0 .~ 04 inn w) a)

r4I~ 044 E 4J- o

u w ro u 44i U-4 (-4 w .4
En x (a 0) C: 0 4-4 0 0 . .

0 0 Orl >1 41 >i> a c
c C w iW 0 0

0 tOU- 0 AJOC 414u C 4J --4 -4
.,1 .*H 0 40 0i) c Cu 434 -)

*6>i 4J 4-) ~ U C :5 44C 0-40 m0 (1
oi0 a) rci 0 V Q) r-4W a) L t 4 r-

0

60



>1 Q) >

0 '-4

D MJ U) u 4

C N U u

4-J 0 '-4 u uf

0 () x~ f~uU

.1-1 -4 .11 .14 -4 - -4 14-K1

ca- 4 1 1 41 4JJ U 1 41 41 4J U4 J) 41 41
cd -4 1- -4 -4 -1 U- +- K- -4 U -

U> K CJ-4 ) U U KK - 0 (1
j'J Ut) +1 + -4 -A -4 r r-4 .- 1

04J 4 0- U

4-

0 V (V fu 0 0 0 V 0 0 0 m 0 0
lq4 *H j *4 .H -4 --4 ~-4 -4 -f -4 *-4

0 .4) (1) 4) ( 4 C 4 a) J a) 4 a) ) Q
E~ Ei cd 1d Ed Ed E C C 5d 5

'- 4 -4 w4 ' 4 '- -4 -4 -4 w w

Cd -4 r4 rj m N UT IV U U U

(1 (a4 U u U u Ui U -Uf U -U ; U U
41zu .- C

U ) ) D ) ) ) ) ) l)U61) U



F2[

1.2

COPT OPT OPT



F

F2 63

1. . .



B3 ELEMENT RHO

1.24. MULTIPLY

125 1.244 ROC

DIID

MUaPY ...
cl 1Figure 9.c (Ct.

AD4

C3C3 12..



which cannot be shown on a DFO is the upper limit of the

summation. This variable, called JJ in CALC, can have a

value between one and eight and serves as the loop count

for MCALC. The reason JJ cannot be shown on a DFD is be-

cause it is a control variable rather than a data variable.

The two outputs of MCALC, C5 and C6, are the evaluated

summations in the n2-k 2 and 2nk equations respectively.

The second level of the DFD divides the summation

computation into four intermediate computations, computa-

tions Cl through C4, and the two final computations of C5

and C6. All of the variable names used so far in the DFDs

are identical to those used in the original FORTRAN loop

shown in the listing of CALC given in Appendix I. De-

scriptions of these variables describing their relation-

ships to the original equations are given in Table X.

The third level of the DFD gives further details of

the computations of Cl through C6. Many of the data flow

names used here are for the purpose of the DFD only and are

not found in CALC or MCALC. These are also described in

Table X.

Design of MCALC

The basic design of MCALC is shown in the structure

chart of Figure 10. Like the wind tunnel microprogram

LOADS, MCALC was designed using transform analysis of the

DFDs. The inputs B, F, and F2 are transformed into inter-

mediate calculations Cl through C4. Cl, C3, and C4 ar-

65



CN

-4

u-

llqr 00
P-

00

r1-i

110

00
-4 (N 00 4

En 4)

CN-

CI - -- 4

N 00 Cq -lw m 0

-~~~~ En__ __ __r-4__ __ _ __ __ __ _ __ __ _0_

660

*6 O



then transformed into C5 and C6, the two outputs of MCALC.

Figure 11 consists of six structure charts which are the

,,e result of second-level factoring (Ref. 30:180) or further

refinement of the structure chart of Figure 10. These six

structure charts show the calculations of Cl through C6.

As was pointed out in the previous chapter, the variable

names used in the structure chart do not actually exist in

the microcode, since all data or data addresses reside in

registers or main memory. Registers which are associated

with the variables are shown in parenthesis below the

variable names.

To complete the design of MCALC, detailed algorithmic

(register transfer language, pseudo English) steps are

written using the structure of the structure charts. These

steps are shown below:

1. Initialization
a. Read calling parameters from registers/memory.
b. Save parameters in appropriate registers:

X <-- B address, Y <-- JJ (loop count)
S <-- TMPl address, S8 <-- TMP2 address
S12 <-- TMP3 address

2. Calculate Cl. Cl=GAMMA.NU(I)*F
a. Read GAMMA.NU element from B array into A/B.
b. Get F address from parameter list and put into

s3.
c. Call FMPY (Floating Point Multiply).
d. Save Cl in TMPI.

3. Calculate C2. C2=NU(I)*NU(I)
a. Read NU element from B array into A/B.
b. Put NU address into S3.

' c. Call FMPY.
d. Save C2 in TMP2.

4. Calculate C3. C3=C2-F2
a. Get F2 address from parameter list and put into

S3.
b. Call FSUB (Floating Subtract). (C2 still in

A/B).
c. Save C3 in TMP3.

5. Calculate C4. C4=(RHO(I)*C2)/(C3*C3+Cl*Cl)
67



4J
4

0 Z E-4

044
Vi"1 '-412

00

F-4I

4

E--4

F4 2:
0-4

68

- - --



A-0 0

P4 CN
z u )

U0

rX.4

69



E-4~

u E-4 4c

04 E- C
z m ETAj

44

70



H *

-ZV 00

U (n

C) )

0 -4

urn

(N ~~71-0n<

.1u



19 1

IE--

00

E-4 M

z U

72



U Q
a4a

E4 CU
Ux 

o

V7



a. Read C2 from TMP2 into A/IB.
b. Put RHO element address into S3.
c. Call FMPY.
d. Save result (RHO.C2) in TMP2.
e. Read C3 from TMP3 into A/B.
f. Put C3 (TMP3) address into S3.
g. Call FMPY.
h. Save C3*C3 temporarily into ClC3 location.
i. Read Cl from TMPl into A,/B.

j. Put Cl (TMPl) address into S3.
k. Call FMPY.
1. Put C3*C3 (Cl.C3) address into S3.
m. Call FADD (Floating Add).

n. Save C3*C3+C1*CI in C.C3.
o. Read RHO.C2 from TMP2 into A/B.
p. Call FDV (Floating Divide).
q. Save resulting C4 in TMP2.

6. Calculate C5. C5=C5+C3*C4
a. Put C3 (TMP3) address into S3.
b. Read C4 from TMP2 into A/B.

Sc. Call FMPY.
d. Read C5 address into S3.
e. Call FADD.
f. Save new C5 back in C5 location.

7. Calculate C6. C6=C6+Cl*C4
a. Read Cl from TMP1 into A/B.
" . Put C4 (TMP2) address into S3.
c. Call FMPY.
d. Read C6 address into S3.
e. Call FADD.
f. Save new C6 back in C6 location.

8. Check for completion.
a. Decrement loop counter (Y-reg).
b. if the counter does not equal 0, go to step 2.
c. Return to calling assembly language routine.

Implementation of MCALC

MCALC was implemented in microcode, using a short as-

sembly language routine called ACALC to handle the inter-

face between the FORTRAN-coded CALC and the microcoded

MCALC. Listings for these three programs are in Appendix

J.

The implementation of MCALC in microcode was very

4V difficult because of the number of floating point opera-

tions required -- three adds, one subtract, seven multi-

74

.... ....



plies, and one divide. This require±ment created two major

Sproblems -- a subroutine return address problem and a WCS

space problem.

As discussed in the previous chapter, the microcoded

floating point routines in ROM cannot be used directly be-

cause of the problem of leveled subroutine calls in the M-

Series machine. Only one return address can be stored in

the SAVE register. This problem was solved in the LOADS

microprogram by duplicating the subroutines in WCS and

modifying them to return to a fixed address in Lhe calling

program. This direct return technique was possible in

LOADS because only one call was needed to the floating

point multiply routine and one call to the floating point

add routine.

This direct return technique would also have worked in

MCALC for the one divide, but not for the adds, multiplies,

and the one subtract. The subtract routine is actually

part of the the add, so it is also effectively called sev-

eral times. If a subroutine is called more than once froin

more than one address in the program, then the reLurn ad-

dress must somehow be saved, or the subroutine must have

some way of modifying a fixed return address. Another

* register could be used to store the extra return address,

to augment the SAVE register, but there are no microin-

structions to make the transfer into the SAVE register.

4 - The problem was finally solved by storing all the return

addresses of the microprogram in a table and coding a

75

I



"jump" to the beginning of the table modified by an offset

saved into the instruction register. Thus, in a sense the

return address was stored in the instruction register.

The WCS space problem was created because of the ap-

parent necessity to duplicate all of the floating point

routines in WCS. Duplicating all four routines required

146 words of the 256-word WCS. This did not allow enough

room for the rest of the program. This problem was solved

by duplicating all but the divide routine, saving 53 words.

This was enough to allow the 256-word microprogram to fit

in WCS. The one divide was accomplished by microcoding

instructions to load the divide arguments into their proper

registers and main memory locations, and then returning to

a macroinstruction to perform the divide. The divide mac-

roinstruction was then followed by another macroinstruction

which reinvoked the microprogram at the continuation point.

This "trick" allowed control of the loop to remain at the

microcode level, even though the divide was initiated by a

macro instruct ion.

.4

Testing

Testing of MCALC consisted of a module test only.

* This test was run on the AFIT HP system using the special

driver program CF)RVR to provide the necessary inputs to

MCALC (via CALC and ACALC). The test had two major pur-

e poses (1) to verify correct output, and (2) to measure

speed increase as a result of microprogramming.

76



Output Verification. The test data used for the

output verification phase of the test was obtained from

AFWAL/MLPJ personnel. Typical values for each of the

equation parameters were chosen. The method of verifica-

tion used was to simply compare the outputs of the micro-

programmed version of the program to the non-micropro-

grammed version.

As expected, the program did not produce the correct

outputs the first time, and debugging was necessary. De-

bugging was severely hampered by the size of MCALC. The

Micro Debug Editor (MDE), which was very useful in the de-

bugging of the LOADS microprogram, was much less useful

here. If breakpoints are used in the debugging process,

MDE requires almost half of the 256-word WCS space to op-

erate. This meant that MCALC had to be segmented into

overlays, and loaded into WCS in parts. This overlay

technique of debugging was found to be very frustrating aid

prone to human error. Breakpoints in each overlay had to

be carefully planned, so that the next overlay could be

loaded. Segmenting the program into overlays also requi,-ed'

keeping two separate versions. This led to several false

indications when the two apparently identical versions

(except for overlaying) gave different results. The de-

bugging difficulty was compounded even further by the fact

that MCALC was a loop.

Because of the problems of using the overlays with the

MDE, the overlay debugging technique was largely abandoned

77

0.



for a higher-level approach. Under this approach, the en-

I tire MCALC microprogram was loaded, and the MDE was not

used for setting breakpoints. Inputs were modified in the

FORTRAN driver to detect corresponding changes in the mi-

croprogram output. If it was necessary to examine a mi-

cro-level register, the microcode was modified slightly to

pass the register value back to the FORTRAN driver through

a main memory address. The MDE was still useful for making

small changes to microcode. This saved editing and reas-

sembly of the microprogram source, and also kept the source

and object files free of debugging code. This higher-level

debugging approach was successful, and the microprograirunmed

version finally produced the expected outputs, completing

the first phase oE the module test.

Speed Measurement. The speed measurements of MCALC

and the FORTRAN loop replaced by MCALC were accomplished

using executive calls to read the system clock. This was

the same technique that was used on the LOADS microprogram.

The routines were called 100 times from a loop to get ac-

curate timing measurements. The measurements showed the

microprogrammed routine to be about ten per cent faster

than the FORTRAN routine.

*As in the speed improvement of the LOADS microprogram,

this ten per cent speed increase was significantly less

than the gains of six to ten times (Ref. 5:98) or two to

twenty times (Ref. 9:49) reported in the literature. Close

analysis of the assembly language generated for the FORTRAN

78

I-



routine provided the answer to this apparent disparity.

Totaling the instruction times for floating point and non-

floating point instructions showed that 66 per cent of the

routine's execution time was spent in the floating point

instructions. Since the microcoded version of the program

used these same floating point routines, no speed improve-

ment could be made to 66 per cent of the program. This

meant that even if all the non-floating point instructions

could have been eliminated, the speed gain would still have

been only 34 per cent! Thus, the gain of ten per cent was

reasonable for this particular program.

Summary

This chapter covered the requirements, design, imple-

mentation, and testing of a microprogram called MCAfJC, de-

signed for use in the laser materials modeling program.

The application of the microprogram showed a ten per cent

speed improvement in the refractive index calculation rou-

tine of the modeling program. This small improvement was

4 due to the high ratio of floating point to non-floating

point instructions in the program. This improvement was

not great enough to show an operational improvement of the

program, and thus was not tested on the operational ma-

chine.

79



VI. Automating the Tuning Process

Introduction

The microprogramming tuning technique ased in the wind

tunnel control program and the laser materials mode]A.ing

program is largely a manual technique. Except for the

generation of the program activity profile, all of the

tuning processes must be accomplished manually by the pro-

grammer. This technique, while effective, is slow, costly,

and requires microprogramming expertise. These disadvan-

tages motivate the study of automatic tuning techniques.

The purpose of this chapter is to review the research that

has been done in the area of automatic tuning, and with

this background, discuss the feasibility of developing an

automated tuning system on the AFIT HP 21MX computer.

Backg round

The literature search done for this thesis investiga-

tion revealed that several researchers (Refs. 13-19) had

,4 done work in the area of automatic tuning of computer ar-

chitectures. Three different tuning approaches from the

literature are presented here.

Tuning Approach #1. The first approach presented is

one by K.A. El-Ayat and J.A. Howard (Ref. 17). In their

approach the tuning process is divided into three major

steps: (1) performance monitoring and mea.3urement, (2)

80

1.



analysis of the data of the first step, and (3) synthesis

* of microprograms to improve deficiencies found in the sec-

ond step. The goals of this approach are "significant im-

* " provement in performance, low implementation cost (over-

head) and minimal human intervention" (Ref. 17:86).

The performance monitoring and measurement step is

essentially an enhanced version of the activity profile

generation used in this thesis study. As discussed in

Chapter III, the monitoring can be done with hardware,

software, or microcode. Here, the step is done with a very

short (eight lines) microprogram, presumably added to the

instruction fetch routine. The result of the performance

monitoring and measurement is an instruction trace and a

trace of data referencing patterns. The instruction trace

indicates where a program should be tuned, and the data

trace indicates which data items should be stored in

micro-level registers to eliminate main memory fetches.

The purpose of the analysis step is to analyze the

data from the first step to determine where the program

should be tuned. Two types of program segments are se-

lected for tuning, loops and non-loops. The loop segment

* is a set of instructions which is terminated by a branch

back to the first instruction. The non-loop segment can be

terminated by either a branching or non-branching instruc-

tion. In the non-branching case, termination is indicated

when the profile activity of that instruction is less than.

- that of the preceeding instruction. If the segment is

81

aA



terminated by a branching instruction, the branch cannot be

back to the first instruction.

U In the analysis algorithm, the execution profile is

searched, and each instruction execution count is compared

to a minimum preset threshold count. If the threshold is

Umet, the instruction corresponding to the execution count

is selected as the first instruction of the segment. Sub-

sequent instructions are examined to determine the end of

the segment and the segment type. A segment must also meet

a preset minimum size threshold (minimum number of machine

instructions). The resulting output of the analysis step

is a set of program segments ordered by segment type, size,

and execution frequency. This ordering assures that seg-

merits having the greatest potential for performance im-
Vprovement are tuned first, since the WCS space may prevent

the tuning of all the selected segments.

The final step of this tuning approach is the synthe-

sis of the microprograms and the machine language instruc-

tions which invoke the microprograins. Program segments are

taken in order from the analysis step, and checked to see

if the corresponding microcode will fit in the WCS. if so,

the first machine instruction of the segment is replaced

with an instruction which invokes the microprogram. This

instruction is followed by the segment operand addresses.

Each instruction is translated into microcode using the

instruction opcode as the translation key. The microcode

7 d - is then loaded into WCS, ready for execution. Loop seg-

82



ments require extra microcode to initialize working micro-

level registers, which store loop variables, frequently

used operands, and intermediate results.

The synthesis step also includes microcode optimiza-

tion. The optimization applied here eliminates unnecessary

instruction and data fetches, makes use of local store and

emit fields within microinstructions, eliminates redundant

and negated microoperations, and uses parallel microopera-

tions when possible.

V Results of tuning experiments using this approach show

K- that the speed of loop segments increase 4 to 8 times, and

non-loop segments by 1.7 to 4 times. The speeds of the

overall prograns show a 30 to 45 per cent improvement.

Tuning Approach #2. The second tuning approach

presented here is one by Philip S. Liu and Frederic J.

Mowle (Ref. 18). It is actually four separate methods of

tuning that they have studied: (1) "Static Loading of Inner

Loops," (2) "Selective (and Static) Loading of Inner

Loops," (3) "Dynamic Overlaying of Inner Loops," (4) and

"User Aided." The first three methods consider only inner

loops of programs as candidate segments for microprogram-

ming. The candidate segments of the fourth method can be

either loop or non-loop segments.

The first method requirs the compiler to identify all

the inner loops of the program. The loops are then con-

verted to microcode in the order that they appear in the

program. Data items within the loops, both variables and

83

: :: ...-. " ,-"--•



constants, are mapped into available micro-level registers.

If not enough registers are available, the most frequently

used data items are mapped first, and the remaining items

are accessed from main memory. The conversion process,

which can be done at the source or object code levels,

continues until the WCS is filled. The major drawback of

this first method is that the WCS can be filled before all

the loops have been converted. Since the loops have been

taken in the order that they appear in the program, some

time-consuming loops may be omitted.

The second method remedies the drawback of the first

method by requiring the compiler to assign priorities to

the inner loops. Loops are then converted and loaded into

the WCS on a priority basis. The priority of an inner loop

is equal to its number of outer loops. The assumption here

is that the inner loop with the greatest number ol outer

loops will be executed the most times, and should be given

the highest priority. Inner loops with equal priority are

converted to microcode in order of size, the one with the

most object instructions taken first. With this second

method all tne inner loops may still not fit in the WCS,

but at least the most important ones are loaded first.

The third method insures that all inner loops of the

program can be loaded into th-e WCS, but not all at the same

time. This method works like a cache memory system where

the main memory is divided into blocks, and a block is

loaded into the Easter cache inemory when it is needed. In

84



I

this third method, all the inner loops are converted to

microcode, given an identification number, and stored in

. main memory. When a loop is needed, the identification

number of the one currently in the WCS is checked. If the

needed loop is not in the WCS, then it is loaded over the

one currently in the WCS. The major problem with this

method is the overhead of swapping microcode in and out of

the WCS. This overhead can be quite high because the WCS

word length is usually greater than that of the main memory

word, requiring two, three, or even more main memory worr

tranfers for one WCS word. The speed gain of the micro-

coded loops has to be great enough to offset this overhead.

The first three methods assume no a priori knowledge

about the execution of the program. The fourth method as-

sumes that the user has such knowledge about the program.

This method allows the user to specify the program segmerts

to be microcoded and the order in which they are inicro-

coded. All the microcoded segments can be initially loaded

into the WCS as in the first and second methods, or they

can be dynamically overlayed as in the third method.

All four of the above methods were tested with six

arbitrarily-chosen FORTRAN programs. The resulting speed

gains are shown in Figure 12 (Ref. 18:Fig. 6) as functions

of the WCS size. As shown, the fourth method produced the

best program improvement, because of the human interven-

tion. The second method, however, did almost as well with

no human intervention. With a small WCS size, the third or



AVERAGE
1 0GAIN MAIN MEMORY TO WCS MEMORY SPEED 3

2.8

2.6

2.4 EHD

2.2

2.0 MTO

1.

1. -

86



AD-A24 853 APPLICATIONS DIRECTED MICROPROGRANING ON R /2
NINICOMPUTER SYSTEM(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

UNCLRSSIFIED G A SCHOON DEC 82 AFIT/GCS/EE/82D-3i F/G 9/2 NL

I NI- E l-El



.IF

-1-

I-A



overlay method did the best. Liu and Mowle recommend a

combination of the third and fourth methods, the user aided

and dynamic overlay methods.

Tuning Approach #3. The third tuning approach is

. one used in a system designed and implemented by K.

Sakamura, T. Morokuma, H. Aiso, and H. lizuka (Ref. 19). A

model of the system is shown in Figure 13.

The model shows that the system consists of a comput-

er, a monitor, an analyzer, a data base, and a feedback

mechanism. The computer executes the program (or problem).

The monitor collects information on the relative frequen-

cies of machine instructions, sequences of instructions

(serial dependencies), and address and data values. The

analyzer uses this information obtained by the monitor to

determine which segments of the program should be micro-

coded in order to speed up the program execution. The an-

alyzer then synthesizes these new microcoded instructions.

The feedback path is used to write the newly synthesized

inicroprogramns into the WCS, thus tuning the architecture of

the computer. The data base for learning stores informa-

tion about previous iterations of the tuning process. The

analyzer can refer to this information in order to minimize

the number of iterations.

An experimental system has been implemented using an

HP 2100 computer with a 1K X 24-bit control store (0.25K

ROM and 0.75K WCS). The monitor is a DYNAPROBE 7900+8000
I

hardware monitor, and a PDP-11V03 is used as the analyzer

87



U. ~- - .PROBLEMSUU U-

COMPUTER RESULT'

DAAAEFR ,AFN

Fiue 1. Mdlo nAtmtcTnn ehns

IE

D OIO

B (arwar, ofwar o Fimwr8

4A

CI



and synthesizer. A block diagram is shown in Figure 14.

As the program under test executes, the DYNAPROBE

monitors the execution and feeds the information directly

to the PDP-11V03. The PDP-IlV03 analyzes the execution

information, synthesizes the new instructions, and passes

these new instructions to the HP 2100 through the I/O in-

terface.

Since separate hardware is used for both the monitor

and analysis functions, there is very little, if any,

overhead in the tuning process. The result of the experi-

mental system is a 30 to 60 per cent improvement in execu-

tion time of the tuned programs over the originals.

Review of the Three Approaches. The three '-

proaches discussed are quite different from each other, but

they share two common steps: (l) automatic determination of

the program segments to microprogram, and (2) automatic

synthesis of the microprograms.

The first approach uses a microprogram to precisely

monitor program execution. The program is divided into

loop and non-loop segments, and the execution data is used

to determine which segments to microprogram. In the second

approach the process of determining which segments to mi-

croprogram is simplfied by choosing only inner loop seg-

ments or other segments specified by the user. The third

approach uses a hardware monitor to obtain program execu-

tion data, and uses a separate computer to perform the

S-- analysis and determine which segments to microprogram.

89



H 0)

a4J

-..

I II
I I x

F4 W 0 I
-4 F4 Z E-4

u0

4g -4Z Cjc

4-j
904

II



This approach is the most sophisticated of the three, but

also requires the most hardware. The first approach is

next in sophistication, but requires modification of the

computer's microcoded fetch routine. The second approach

is by far the simplest and requires no extra hardware or

special modifications to the computer firmware.

Wvhile all three approaches use automatic microprogram

synthesis, only the paper on the first approach covers the

actual algorithm used to perform this step. The software

which implements the algorithm resides in the machine run-

ning the program, and the synthesis step is performed in an

"ooff-line" mode. The third approach uses a separate corm-

puter to perform this step, the same machine that performed

the analysis. in this approach the synthesis (and an~aly-

sis) is performed while the application program is running,

and the new microprograins are transferred back to the ap-

plication machine through a feedback loop. Thus, the syn-

thesis is an iterative process performed in an "on-line"

mode. Details of the process in the second approach are

not given. Again, the third approach seems to be the most

sophisticated at the expense of more hardware.

* The performance results of the three approaches are

similar. The first approach showed performance improve-

6 ments of 30 to 45 per cent, and the third approach showed

improvements of 30 to 60 per cent. The second approach had

similar gains, although they are given as ratios of non-

- tuned to tuned execution times, rather than percentages.

91



Automating the AFIT HP 21MX System

The background information on the three automatic

* tuning systems provides a good perspective for examining

the feasibility of an automated tuning system on the AFIT

HP 21MX system. The following discussion is intended to

present the general requirements and some possible ap-

proaches to developing such a system.

General Requrement. The general requirements can

be given in terms of user-system interface, system input

and output, and performance objectives.

The users of this system are expected to be competant

programmers in higher level languages, mainly FORTrRAN ,

since this is the major higher level language used on the

HP 21MX at Wright-Patterson. They may or may not have ex-

perience with HP 21MX assembly language, and probably do

not have microprogramming experience. The tuning system

should be designed with these experience levels in mind.

The system does not have to be totally automatic with no

user interaction, such as the one in the third approach

discussed. In fact, an interactive system may be prefera-

ble, as suggested by "user aided" method in the second ap-

proach. The system should, however, be user-friendly and

4 should make the details of the microprogramming and the

micro-level architecture as transparent as possible to the

user.

4 The inputs to the system consist ot the all of the

92



available files associated with the program (FORTRAN or

assembly language) being tested, plus interactive inputs

from the user. The program files include the following:

source, relocatable object, memory image, listing, and load

map files. All of these files may not be needed to accom-

plish the tuning process, but are listed anyway as possible

inputs. The one output of the system is an executable mem-

ory image file of the tuned program.

A performance objective is an important requirement

for the system, but it is difficult to specify a program

speed improvement figure that the system should be able to

meet. The amount of improvement of a given program is

largely dependent on the characteristics of that program.

This is true for manual tuning as well as automatic tuning.

A 25 to 30 per cent improvement is probably a reasonable

* performance objective for an automatic system as indicated

by the results of the three approaches discussed. Anything

below this is probably operationally insignificant for most

programs.

Possible Approaches. As discussed, the three ap-

proaches share two common steps in the tuning process: (1)

automatically (with possible user-interaction) determining

which segments of the program to microprogram, and (2) au-

tomatically synthesizing the microprograms. Possible ap-

* proaches to automating the AFIT system are discussed in

* terms of accomplishing these two basic tuning steps.

The activity profile generator program (ACTV) par-

93



tially satisfies the requirement to determine which program

segments to microprogram. ACTV in its present form divides

a program under test into 50 equal intervals and determines

a profile couat for each interval. These equally divided

intervals do not, however, correspond to the logical seg-

ments of the program, the loops and non-loops, for example.

The profile counts for these equal intervals must b~e con-

verted into counts for the logical segments. This requires

first the determination of the address boundaries of the

logical segments, and then the correlation of these bound-

aries to the profile interval boundaries.

An example may help explain the process. Figure 15

contains a block diagram and partial execution profile of a

* program with three segments -- a non-loop followed by a

loop, which is followed by another non-loop. The address

boundaries in octal for the three segments are 40000 to

40250, 40250 to 40330, and 40330 to 40620 respectively.

Finding the segment boundaries requires an algorithm which

analyzes the branching instructions of the program. The

example shown contains at least one branching instruction,

a "jump" from the end of the loop segment back to the be-

ginning. No software currently exists at AFIT to perform

the segment-bounding task on the HP system, but the soft-

ware should not be difficult using an existing algorithm.

El-Ayat and Howard, authors of the first approach dis-

cussed, describe one algorithm for finding segment bound-

aries (Ref. 17:86). Their algorithm requires a very pro-

94



* Program Activity Profile for EXAMPLE
From 040000 to 040620 EXAMPLE LOGICAL

*in Increments of 10 SEGMENT MAP

*.INTERVAL FROM TO NO. OF
NO. HITS 040000
1 000000 040000 4.
2 040000 040010

*3 040010 040020

NON-LOOP
SEGMENT

8 040060 040070 2.

21 040230 040240 1.
22 040240 040250 1-
23 040250 040260 17. 040250-
24 040260 040270 22.
25 040270 040300 30. LOOP
26 040300 040310 27. SEGMENT
27 040310 040320 25.
28 040320 040330 10.
29 040330 040340 1. 040330
30 040340 040350

40 040460 043102 1.
41 040470 043107 2.

NON-LOOP
SEGMENT

46 040540 043140 3.
447 040550 043145 1.

48 040560 043152 2.
49 040570 043157
50 040600 040610
51 040610 040620
52 040620 077777 3. _040620-

Figure 15. Mapping Profile Interval Counts to Logical
Program Segments

95



cise program activity profile, however, and would have to

be modified to work with the statistical profile provided

by ACTV. Liu and Mowle, the authors of the second ap-

proach, mention another technique called "control flow

analysis" for detecting loops in a program, but do not give

details of the technique (Ref. 18:817). User interaction

may also be beneficial in finding segment boundaries of a

program.

When the segment boundaries are found, the conversion

of interval counts to segment counts can be done. The ac-

tivity profile in the figure shows counts or "hits" for

several of the 52 intervals (50 intervals in the program

:*'- range and two outside). The bracketed "hits" show the

S. .-. mapping of the profile intervals to the logigal segments of

tt the program. From a mapping such as this, the profile

counts for each logical segment can be determined, and a

decision on which segments to microprogram can be made.

This process can easily be done by software given all the

input information shown in the figure.

The reader should note that this is a contrived exam-

ple with the interval and segment boundaries chosen to al-

low a perfect mapping. In practice, this does not usually

* . happen. A profile interval can overlap a segment boundary,

making it difficult to determine which segment receives the

profile count. This is probably not major problem, because

other segment counts can be used to determine the probable

correct segment. If the program is very large, the inter-

96

,JA



vals of the profile can actually be larger than the logical

segments, since the profile generator program presently

allows only 50 intervals. Several logical segments could

then occur in one interval, again making a correct mapping

of the count difficult. Two possible solutions to this

problem exist. The number of profile intervals can be dy-

namically adjusted (within main memory limits) to match the

program size, or several profiles can be run with each

"looking" at a different portion of the program. This

latter approach was used in the manual tuning of the wind

tunnel and laser materials programs.

Another approach to determining which program segments

to microprogram is to choose only loop or inner-loop seg-

ments as in the second approach of the background informa-

tion. This approach eliminates the need for any type of

activity profile generation and the problem of mapping

profile intervals to program segments. The segments must

still be identified, but this has to done anyway. This

approach has the advantage of simplicity, and the results

from the three approaches discussed shows that it compares

favorably with the others. Also, the analysis of the two

programs in this thesis study supports the theory that

loops account for much of the program activity, and are the

best candidates for microprogramming.

From a user point of view, determining which segments

of a program to microprogram is the easier of the two basic

steps in the tuning process. The concept of prograim seg-

97



ments, such as loops and non-loops, and their execution

times is nothing really new to the higher-level language

programmer. The second step of synthesizing the micropro-

grams is a much more unfamiliar task, and requires fawil-

iarity with the architecture of the machine and assembly

language and microprogramming expertise. Thus, the auto-

mation of this step is even more important. An example is

used here to explain the synthesizing process.

Figure 16 shows the synthesis process for two macro-

instructions from the manually-tuned wind tunnel subroutine

SPEED. The two macroinstructions, "LDA .YZT" and "STA

..YZT", are shown along with the two "BSS" pseudo-instruc-

tions, which define memory locations for .YZT AND ..YZT.

The function of these instructions is to simply load the

"A" register with the contents of .YZT and store that con-

tents into ..YZT (i.e., ..YZT = .YZT).

The figure shows the breakdown of the instructions'

machine code into four fields -- D/I, opcode, Z/C, and ar-

gument relative address (all numer* values in octal). The

opcode and argument relative address are self-explanatory.

The D/I is a bit indicating whether the argument relative

address is used directly or indirectly. The Z/C bit indi-

cates whether the argument address is relative to page zero

of memory or the current page. For these two instructions,

both addresses are direct and relative to the current page

-- page 42000 as indicated by the instruction addresses.

The breakdown of the machine code is the key to the

98



Two Macroinstructions to be Microprogrammed

Instruction Address Machine Code Label Instruction
<042647 - < 062654 LOOP2 LDA .YZT

-----<042650 072670 STA ..YZT
042654 000000 YZT BSS I
042670 000000 ..YZT BSS I

RELATIVE RELATIVE
D/I OPCODE Z/C ADDRESS D/I OPCODE Z/C ADDRESS
\0 14/ \1 0654/ \0 16 \1 0670/

MICROCODE LOOK-UP TABLE
D/I OPCODE MICROCODE

:. FORM. .
"': ~AGUMENT. ..
" ABSOLUTE _

ADDRESS 0 14 44074707
44000447
03700547

----<042654 0 16 44074707
---- <042670 03700461

_ __ _ 37726007

Synthesized Macroinstructions

LOOP2 OCT 105620 Invoke microprogram
-- >OCT 042654 .YZT address

>OCT 042670 ..YZT address

Synthesized Microinstructions

4074707 READ INC PNM P Read argument address
-)44000447 READ INC M TAB Read argument
03700547 PASS A TAB Load into register Ar44074707 READ INC PNM P Read argument address
03700461 MPCK PASS M TAB Address to M register

4 for WRTE; Do memory

L3 protect check
L37726007 WRTE RTN PASS TAB A Store contents of A

Return to FETCH routine

Figure 16. Microprogram Synthesis Example

99



synthesis process. The D/I and opcode fields can be used

as an index into a microcode look-up table to obtain a se-

*a quence of microinstructions which will replace the original

macroinstruction. This partial look-up table is derived

indirectly from the microcode for the basic instruction set

stored in control store ROM. A listing for the entire ba-

sic instruction set of the HP 21MX is available in Appendix

E of Reference 32. Table XI shows the microinstructions

for the memory reference group instructions, such as the

LDA and STA instructions in the example. The microcode in

Table XI cannot be used directly to translate a macroin-

struction to a microroutine. The reason for this is that

the macroinstruction is performed partially by the micro-

. -coded fetch routine (shown at the bottom of Table XI) and

partially by the macroinstruction's microroutine. The LDA

microroutine, for example, consists of only one microin-

struction as shown in Table XI (LDA and LDB are shown as

LD*). The fetch routine in this case performs the major

part of the instruction. Another reason the microcode from

the table cannot be used directly is that the microopera-
6

tions within the microinstructions often perform operations

which are conditional on information in the instruction

register. When the macroinstructions are replaced by mi-

crocode, they are no longer fetched, and are not stored

into the instruction register. The microroutines stored in

the look-up table must compensate for the lack of the in-a
struction fetch and the information in the instruction

100

a



U))

0 0 l 0 a 00r:
0 w~c Of < L
0 14b4)

E- E- X ci-4 U- E- U 04
w) U) coEr 0 0 w) 14 w
rLi 4J) 13 Z Z C42Z 0 W 0 W U-

: H- F:4 H H U H X H H H CQa. (1 a a "- rX C 0 a & -1
Z C) Z E-4 W H Z 0o z 0) Zu

'*'N H- P H '-. H- H~ W
0 9 M1 -4 HI4 -

W U- W) I-, v)N 0+ U) N. 0 U)v
> <E- > P~ E- 1 > E-4 > H-- > ct

0- O1 0 1 ~ 01i1 0 1 0 N
4 U) v vmm U)V0). v 0vV U) V (n

w) w I~ :D w W W
o 0 w 0 E- -l ).' 1 4 W ecl c~EA
S4I
0

E-H E-4 E-4
U) U U) ) U

a -- U) 00 E-4 a 0) aH

4 -4 HE4 H HL0. ~ - ~ ~
HO) 4

C0
0) -4 U) U) ()UU

S 0 EAO CI EnC4NU U) U) 13 mrj
wJ 4- z 4 enz 40 < <

'44 a4 Q E-4 H Ox a41- C4

>1 H- Z E-4 H- E- E-4H
w w U
0

U) ul En U) U) ce

('4 4

U) 0 a *gC*
C: ~z 4 0 0 0 0 E-E4

.'-4 4 <U xX '-- U
0

101



U) W
U)W E-4 U) U)

W) 0 U0 1%3 En r1

QOt 0 H (g

0- m a 40

En It 0 4 00

M a4 U0 MO E- U) E- WE-
o 4 w Wi) to~r 1.

SU+E-4Z
H w U Z H HO+ Hm -4 <

P E-4 P 0H~0 &'MZa N + W -- E-4

H N HU HU~~s HN I zN ,:
E-4 I H E4 0- v VH 4

r4 0V + wOH-PZ a 4

0 1 4 NI 0 v I 0- 0 C9 I(n v co CD 2: V v --4 1 4 - V

.- N H W U )U)E-4 >4 ij : Z

0

4J U U U V

4H H H U H_- o o 0 m H o
co mHU C•~ -. < z z < z <

HH U4 w rz4 P 0 i E-4

x Ho

L,4

co m -)2

U

PA ,i .- a4E4C. 40a

to UU) i) En E/3 4-) U)H- U) U) nU U) N El) () r UO

C14 C4 a4 H *E4 4 14 -1H C1IH
0

x wzi = 0 Z
H- 0 E- ZHE , 1 H- H0 L-1E-

En U) x) EA 0lQ

' c r o pa icE-

102

U



4-7n..

register.

The microroutines for the LDA and STA instructions in

the example are each three nicroinstructions long. The

mnemonics for the microcode from the look-up table are

shown at the bottom of Figure 16. The "RTN" Ticrooperation

of the last microinstruction is not actually encoded in the

table. It is added to the last microinstruction to trans-

fer control back to the macroinstruction level.

The Z/C and argument relative address fields are used

to form an argument absolute address. If the address is

relative to page zero, the relative and absolute addresses

are equivalent. If the address is relative to the current

page, the current page address is added to the relative

address. The example shows the formation of the .YZT and

..YZT absolute aadresses. These addresses are sequentially

annexed to an argument list following a synthesized macro-

instruction. This macroinstruction invokes the synthesized

microroutine, and along with the argument list, replaces

the original macroinstructions.

Synthesizing the microroutines in the manner described

usually does not produce optimal microcode. Optimization

should be performed as another step of the synthesis pro-

cess, as in the first tuning approach discussed. Fre-

quently used argument addresses should be removed from the

argument list and stored into available micro-level regis-

ters. The address can then be accessed by a ryistair

. transfer instead of a main memory read, saving at ]easL one

103

.4 . . . .



............. . . . . . . . . ...

microinstruction. Microinstructions which access main

memory should be followed by microinstructions which do not

access the memory data register, the "T" register. Memory

reads and writes require two microcycles, and such in-

structions cause a "processor freeze" (Ref. 32:3-14) until

the read or write is complete. At least three "freezes"

occur in the synthesized microroutine of the example, but

nothing can be done in this case. Parallel microoperations

should be used as much as possible. An example of this is

the addition of the "RTN" to the last microinstruction of

the example, rather than making it a separate microin-

struction. Redundant or negated microinstructions should

also be eliminated (Ref. 17:87). These optimization checks

can probably be done during the synthesis, but may be more

easily done during a "second pass".

The final products of the synthesis step are the syn-

-thesized macroinstructions and microinstructions as shown

at the bottom of Figure 16. The macroinstructions may di-

rectly overwrite the ones they are replacing in main memory

or in the memory image file, assuming no relocation or op-

erating system problems exist. The microinstructions may

- be written to the WCS or to a file ising existing micro-

program utilities.

The synthesis step, while more difficult than the

analysis step, is staightforward and is quite adaptable to

an automated tuning system. Probably the most difficult

problem is the building of the microcode look-up table,

104



since this is largely a manual process. The documented

microroutines for the HP 2l1MX base instruction set can be

used as a basis for this table, but require substantial

modification because of the elimination of the fetch in-

struction as discussed earlier. Although building the ta-

ble presents a substantial manual microprogramming effort,

it can be done and is not considered a major obstacle to

automating the synthesis step.

Summary

This chapter has dealt with the feasibility of imple-

menting an automated tuning system on the AFIT HP 21MX

computer. Three automatic systems from the literature were

presented to provide background on the tuning process and

different approaches to the implementation of such a sys-

.7 tem. The general requirements for an AFIT system were

discussed in terms of user-system interface, system input

and output, and performance objectives. Finally, possible

approaches to automating the system were discussed in terms

of accomplishing the two basic steps of the tuning process

-determining which segments of the program to micropro-

gram, and automatically synthesizing the microprograms.

Although many of the implementation details have not been

discussed here, an automated tuning system on the AFIT HP

2lMx is certainly considered feasible.

105



VII. Results, Conclusions, and Recommendations

Introduction

This thesis study focused on the perfocmance improve-

ment of HP 21MX application programs using microprogramming

tuning techniques. Routines from two application programs

were chosen as candidates for microprogramming as a result

of a survey of HP users at Wright-Patterson Air Force Base.

The two routines chosen were a stress calculation routine

for a wind tunnel control program and a refractive index

calculation routine for a laser materials modeling program.

Microprograms were written and applied at points in the

routines indicated by activity profile analysis. The sdeed

improvement of the resulting programs was then measured.

The experience gained from tuning the two application pro-

grams and studies in the literature provided the background

* for investigating the feasibility of developing an auto-

mated t:ining system on the AFIT HP 21MX. This chapter

lists the results, conclusions, and recommendations of the

4thesis study.

Results

The following are considered the major results of the

*study:

1 . The performance improvement of the wind tonnel

stress calculation routine was about 31 per cent. This

resulted in an operational improvement of 33 per ceiit in

106

" a~.



the rod adjustment process of the wind tunnel control pro-

* gram by allowing the simultaneous adjustment of four rather

than three rods. The routine was subsequently integrated

into the operational version of the program. This may have

been the first user-microprogram to be applied to an oper-

ational HP 21MX program at Wright-Patterson.

2. The performance improvement of the laser materials

routine was about 10 percent, which was not enough to no-

ticeably improve the waveform display for the user. This

program showed the limitations of microprogramming in im-

proving a routine with a large number of floating point

operations. Writing and debugging the microprogram for

this routine also provided experience working with large

microprograins and leveled subroutines.

3. Both the wind tunnel and laser materials micro-

programs were developed using software engineering tech-

niques. This resulted in structured microprograms that

were documented much better than the original FORTRAN and

assembly language candidate programs.

4. Work on the two application progratos exposed at

least two HP users at Wright-Patterson to user-micropro-

gra2Ming. These users will hopefully consider the possi-

bility of applying microprogramming to future applications.

5. The investigation into the feasibility of devel-

oping an automated tuning system on the AFIT HP comester

showed that such a system was feasible, and possible ap-

proaches to the development were discussed.

107



Conclusions

Based on the above results, the following conclusions

are made:

1. Both of the application programs tuned involved

floating point operations. Although two programs are

hardly a large enough sample on which to base any hard

conclusions, the inference here is that the HP 21MX appli-

cation programs in greatest need of performance improvement

are those with floating point operations. Ironically,

these are the ones that can be helped the least with mi-

croprogramming on the HP 21MX-M Series or 21MX-E Series

computers. The 21MX-F Series, however, has floating point

- - operations implemented in hardware, and programs with a

large number of floating point operations running on this

series should benefit as well from microprogramming as

programs with non-floating point operations.

2. Microcode can be structured and well documented

using software engineering techniques. The complexity of a

program, however, can increase significantly with the ad-

dition of microcode. The laser materials code segment, for

example, was changed from a simple 10-statement FORTRAN

"Do" loop to a "CALL" to a 38-statement assembly language

routine, which invoked a 256-word microprogram! All this

was done for a 10 per cent increase in speed! In this

particular case the trade-off of speed versus complexity

.4'- could not be justified, because the increase in complexity

108

I



greatly outweighed the overall benefit of the increase in

speed. In the wind tunnel programn, howc:ver, the routine

was already at the assembly language level. Thus, much of

the complexity already existed, and substituting the code

to invoke the microprogram actually decreased the assembly

language code. The microprogram was about one-half as long

as the laser materials microprogram, and the speed increase

was three times as much. The trade-off in this case was

justifiable.

3. The manual tuning technique used in this thesis

study is too cumbersome to become widely used at Wright-

Patterson (or anywhere else). To use this technique a

programmer must learn the HP assembly language, the micro-

assembly Language, their associated debugging tools, and

the internal architecture of the system. The training

time, along with application program analysis and micro-

program development time represents a large investment with

little guarantee of results.

Recommendations

The following recommendations are made as a result of

this thesis investigation:

1. Since the application programs of this study both

involved floating point operations, further study cni'lld

focus on other types of applications where microprogrammning

might be of better benefit. Two possibilities are high-

speed sorting and high-speed graphics. One ASD/BENAM.%

109

aA



program called MWASS (Refs. 26,36) could possibly use both

of these capabilities. The program was not considered in

this study because it had not been moved from the CDC comn-

puter to the HP 2lMX. There are still no plans to move the

program, but a high-speed sorting and graphics capability

might seriously influence such a move.

2. Users with programs bound by floating point oper-

ations should consider upgrading to an HP 21MX-F Series

machine. The hardware floating point operations of the F-

Series machine are roughly 20 times as fast as the micro-

programmed functions of the M-S e mahn Rf.3:-25

and 35:13-20). A letter received from the Hewlett-Packard

Company indicates that no hardware floating point proces-

sors are available for the M-Series machine from either

them or any other known source (Ref. 37).

3. Because of the drawbacks of the manual tuning

technique used in this study, it is recommended that an

automated system, as described in the previous chapter, be

designed and implemented on the AFIT HP 21MX computer. In

support of this effort, the upgrading to an F-Series should

be seriously considered because of the floating point and

microprogramming limitations of the M-Series machine. The

initial work could, however, be done on the M-Series. An

automated system would make tuning of application programs

practical for all HP programmers. Without such a system,

user-microprogrammiing has little future on this machine.

110



Bibliography

1. Rauscher, T.G. "Dynamic Problem-oriented Redefinition
of Computer Architecture Via Microprogramming," IEEE
Transactions on Computers, C-27 (11):1006-14
(November 1978).

2. Wilkes, M.V. "The Best Way To Design An Automatic
Calculating Machine," in Manchester Univ. Comput.
Inaugan. Conf.: 16, 1951.

3. Fagg, P. et al., "IBM System/360 Engineering," 1964
Fall Joint Computer Conference Proceedings: 205-31

4. Snyder, David C. "Computer Performance Improvements by
Measurement and Microprogramming," Hewlett-Packard
Journal: 17-25 (February 1975).

5. Gordon, P. and S. Stallard, "Microprogrammed CPU
Architecture Offers User-Alterable Minicomputer
Performance," Computer Design: 91-100 (June 1978).

6. Steidle, John J. Microprogramming: A Tool to
Improve Program Performance, AFIT Thesis
AFIT/GE/EE/81D-56, 1981.

7. Microprogramming: A Way to Get Higher Performance
from HP-1000 Computers. Product Application Note
281-1. Hewlett-Packard Corporation. Sep 1978.

8. Cook, R.W. and M.J. Flynn. "System Design of a Dynamic
Microprocessor," IEEE Transactions on Computers,
C-19: 213-22 (1970).

9. Frankenberg, R. "Unraveling the Mystery in User
Microprogramming," Mini-Micro Systems, 46-49 (Jul
1977).

10. Hansen, G., "User-generated Microprograms Improve Mini
Performance," EDN, 25: 145-9,151 (May 5, 1980).

11. Rauscher, Tomlinson G. and Ashok Kumar Agrawala.
"Developing Application Oriented Computer
Architectures on General Purpose Microprogrammable
Machines," Proceedings of the 1976 National Computer
Conference: 715-22 (1976).

12. Tucker, A.B. and M.J. Flynn. "Dynamic
Microprogramming: Processor Organization and
Programming," Comm. ACM 14, 240-50 (1971).

13. Abd-Alla, A.M. and David C. Karlgaard. "Heuristic
Ili



6

Synthesis of Microprogrammed Computer Architecture,
IEEE Transactions on Computers, C-29, (81:802-7
(August 1974).

14. Abd-Alla, A.M. and Laird H. Moffett. "On-line
Architecture Tuning Using Microcapture," 3rd Annual
Symposium on Computer Architecture: 165-71 (January
19-21, 1976).

15. Luque, E. and A. Ripoll. "Tuning Architectures Via
Microprogramming," Information Processing Letters,
11: 102-109 (October 20, 1980).

16. Luque, E., A. Ripoll and J.J. Ruz. "Dynamic
Programming in Computer Architecture Redefinition,"
Euromicro Journal, 6:98-103 (March 1980).

17. El-Ayat, K.A. and J.A. Howard. "Algorithms for a
Self-tuning Microprogrammed Computer," Micro 10
Proceedings: 85-91 (October 5-7 1977).

18. Liu, Philip S. and Frederic J. Mowle. "Techniques of
Program Execution with a Writable Control Memory,"
IEEE Transactions on Computers, C-27 (9):816-827
(September 1978).

19. Sakamura, K., T. Morokuma, H. Aiso and H. Iizuka.
"Automatic Tuning of Computer Architectures," AFIPS
Conference Proceedings, 48: 499-512 (1979).

20. Meyers, Glenford J. Advances in Computer
Architecture. New York: John Wiley and Sons, Inc.,
1978.

21. Williams, Glenn. AFWAL/FIMN. Technical Discussions,
April 1982.

22. Cain, Maurice R. "Mechanical Design and Control of a
Variable Geometry, Adaptive Wall Test Section for a

Pilot Transonic Wind Tunnel," unpublished interim
technical report, AFFDL, Wright-Patterson AFB, OH. May
1979.

23. Phillippi, Conrad. AFWAL/MLPJ. Technical Discussions,
June 1982.

24. Spitzer, W.G. and D. A. Kleinman. "infrared Lattice
Bands of Quartz," Physical Review, 121 (5):1324-35
(March 1, 1962).

25. Linder, Larry. AFFDL. Technical Discussions, May 1982.

26. Steidle, John. ASD/ENAMA. Technical Discussions, May

1982.
112



27. Meyers, Glenford J. Digital System Design With LSI
Bit-slice Logic. New York: John Wiley and Sons,
Inc., 1980.

28. Knuth, D.E. "An Empirical Study of PORTRAN Programs,"
Software -- Practice and Experience, Vol 1 (1974).

29. De Blasi, M., N. Fanelli, G. Giannelli, and G. Antoni.
"Profile Finder, A Firmware Instrument for Program
Measurements," Euromicro Newsletter, 3 (1):27-33
(January 77)

30. Weinberg, Victor. Structured Analysis. New York:
Yourdon Press, 1980.

31. Spiegal, Murray R. Schaum's Outline of Theory and
Problems of Advanced Mathematics for Engineers and
Scientists. New York: McGraw-Hill Book Co., 1971.

32. Microprogramming 21MX Computers Operating and
Reference Manual. Manual Part No. 02108-90008.
Hewlett-Packard Company. August 1974.

33. HP 12978A Writable Control Store Manual. Manual Part
No. 12978-90007. Hewlett-Packard Company. February
1976.

34. HP 21MX Computer Series Reference Manual. Manual
Part No. 02108-9 . Hewlett-Packard Company. May
1974.

35. HP 1000 E-Series and F-Series Computer
Microprogramming Reference Manual. Manual Part No.
02109-90004. Hewlett-Packard Company. July 1978.

36. Hill, Gary A. "An Introduction to the Multiple
Penetrator and Site Simulator (MPASS) Program," ENADD
Technical Note, ASD, Wright-Patterson AFB, OH. January
1981.

• 37. Apple, Charlene. Computer Marketing Group,
Hewlett-Packard Company, Palo Alto, CA. Technical
Letter, September 28, 1982.

113

. . .°I•. .



4L

Appendix A

Microprogramming Concepts

Background

Microprogramming is a lower level of computer pro-

gramming (Ref. 27:Chapt. 2). Program instructions written

in higher level languages (HLL) such as FORTRAN are first

translated or compiled into machine-dependent machine lan-

guage instructions (macroinstructions) in non-real time.

Each macroinstruction is then translated or mapped (inter-

* .preted) into one or more microinstructions at the time of

program execution. This instruction hierarchy is illus-

trated in Figure 17.

Figure 18 shows an example of a microprogrammed com-

puter architecture. The execution of a program begins with

the fetching of the first macroinstruction of the program

from main memory. The operation code (opcode) of the mac-

roinstruction points indirectly to the control store (mi-

.4 croprogram memory) location of its corresponding microrou-

tine. The microinstructions are sequentially fetched from

the control store and executed, activating the various

hardware register transfer control points, and ultimately

causing the computer to perform the operation specified in

the original higher level language instruction. The next

macroinstruction is then fetched, and the process continues

114



Microinstruction
Microinstruction

Macroinstruction•
(Machine Instruction) Microinstruction

Go to
Macroinstruction
Fetch Routine

Microinstruction
Microinstruction

HLL Macroinstruction
Instruction (Machine Instruction) Microinstruction

Go to
Macroinstruction
Fetch Routine

Microinstruction
Microinstruction

Macroinstruction
(Machine Instruction) Microinstruction

Go to
Macroinstruction
Fetch Routine

Figure 17. Program Instruction Hierarchy

115

r,~ .. .



MAIN MEMORY

INC A
MACROI NSTRUCTI ON

CONTR MEOROL ______

~~~~REGISTER FTHNX

PRGA

Figur 18. xampl MicOogRe optr~ciet

116RO

COTO MMR



until all macroinstructions of the program have been exe-

cuted. Each macroinstruction is es!;entially a call to a

microroutine. The opcode of the macroinstruction indicates

the "name" (address) of the microroutine, and the other

* .fields of the macroinstruction such as address and register

fields serve as the parameters to be passed to the micro-

routine.

Microprogramming requires much greater attention to

detail than programming in a higher level language or as-

sembly language, because of the number of lower-level op-

erations and the timing of those operations. The micro-

-'programer must be concerned with transfers between buses,

registers, and main memory, and the operations of the

S.arithmetic logic unit. These transfers and ALU operations

are specified in the fields of the microinstruction. These

fields are called micro-orders or micro-operations.

Consider, for example, the simple problem of incre-

menting a variable called A. in a higher level language

this can be done with one instruction, such as A=A+I. In

assembly language this problem may require three instruc-

tions -- an instruction to load the value A into an accu-

mulator register, an instruction to increment the accumu-

lator, and an instruction to store the new value of A back

into its memory location. In microcode the problem re-

quires several microinstructions, each microinstruction

comprisi several fields or micro-orders. The required

micro-orders may be as follows:

117

6A



1) Move the address of A from the instruction register
to a data bus.

2) move the address from the bus into a memory address
register.

3) Read the value A from its memory location into a
memory data register.

4) Move the contents of the memory data register to
the data bus.

5) Move the value of the data bus to the arithmetic
logic unit (ALU).

6) Perform an increment operation in the ALU.
7) Move the result from the ALU back to the data bus.
8) Move the result from the bus back to the memory

data register.
9) Write the new value of A back into its memory

location.
The number of microinstructions needed to perform

these nine micro-orders is dependent on the architecture of

the particular machine. Three or four microinstructions is

a realistic number. For example, micro-orders 1 through 3

may make up the fields for one microinstruction, 4 through

6 tha second, and 7 through 9 the third microinstruction.

How Microprogramiming Improves Spe

Since higher level language instructions end up as

microinstructions anyway, it is not apparent that directly

microprogramming all or part of a program would have any

effect on its execution speed. There are hidden factors,

however, which do have an effect. Some of the most impor-

tant factors are instruction fetch time, memory speed,

parallelism, and other additional micro-level capabilities.

The time required to fetch an instruction from memory

represents 35 to 45% (Ref. 7:11) of the total execution

time of an instruction. As shown in Figure 17, each mni-

croinstruction of the computer's basic instruction set

118



74

concludes with a jump to a macroinstruction fetch routine.

"* By combining the microroutines generated by two or more

macroinstructions, the instruction fetches between micro-

routines are eliminated. Combining microroutines essen-

*tially creates a new macroinstruction with the power of

several of the original macroinstructions, and only one

instruction fetch is required. The elimination of the ex-

tra instruction fetches can significantly improve the exe-

cution speed.

Microinstructions also must be fetched from memory.

The fetch of a microinstruction is, however, significantly

faster than that of a macroinstruction. Because the con-

trol store is much smaller than a computer's main memory,

- . faster and more expensive memory components can be used.

This memory is typically two to five times faster than main

memory (Ref. 7:11).

Parallelism is also an important factor in improving

execution speed. Since a microinstruction is made up of

several microorders, independent parallel operations can be

specified in one microinstruction. An example of this

concept is the performance of an arithmetic operation and a

memory operation at the same time. Parallel operations can

provide additional gains in speed. The number of parallela
operations is, however, highly dependent on the number of

fields in the microword (the width of the microword) and

the algorithm being microprogrammed.

The additional capabilities at the micro-level can

119

e



also contribute to an increase in execution speed. Addi-

tional registers allow the storage of constants, frequently

used operands, and intermediate results. This additional

storage can often be used to eliminate time-consuming ref-

erences to main memory. The direct testing of flags and

direct shift control can also be used in some applications

to improve speed.

Combining all of these factors can provide speed gains

many times that of assembly language. Realistic values are

between 2 and 20 times (Ref. 9:49).

120



APPENDIX B

Glossary of Terms Used in this Report (Ref. 7:2)

Arithmetic Logic Unit -- Part of the computer's hardware

which performs arithmetic, logic, and other operations.

Assembly Language -- Computer-dependent machine language

which is the base instruction set. In a microprograitued

computer, each Assembly language instruction is implemented

by a specific microprogram.

Control Processor -- The section of the computer which

rr- determines what the computer is to do for each machine

instruction.

Control Store -- The memory, used by the Control

Processor, in which microprograms reside. it may be

implemented with ROM, PROM, and/or WCS.

Fields -- Microinstructions are divided into several

parts, known as fields. Each field specifies different

4 micro-operations, which may be independent of one another.

Machine Instructions The binary-coded bit patterns

4 - that actually control the operations of the computer via

121



the control Processors. Programs written in symbolic

languages, such as FORTRAN, are translated to machine

instructions by Compilers, Assemblers, or Interpreters.

Microcode -- Another name for the microinstructions that

make up a microprogram, either in source language or in

object code form.

Microinstruction -- One instruction of a microprogram,

typically made up of one or more micro-orders.

Micro-order -- A complete operation, such as loading a

register or setting a register equal to the product of two

other registers. Depending upon the control processor,

more or less than one micro-order can be specified by a

microinstruction.

Microprogram -- A program written for a microprogrammed

computer at the control processor level to control the

computer. In a totally microprogrammed computer, every

machine instruction is implemented by a microprogram.

Microprogramming -- The process of developing

microprograms for control of a microprogrammed computer.

PROMs (Programmable Read-Only Memory) and ROMs (Read-only

Memory) -- Are components used to store microprograms in

122

I.



control store. Once programmed, they cannot be altered.

ROMs differ from PROMs in that ROMs have their

microprograms installed when they are manufactured while

PROMS are programmed after they have been made.

WCS (Writable Control Store) -- Control store implemented

with Random Access Memory so that the user can dynamically

alter its contents.

123



APPENDIX C

The following is a list of HP users at Wright-

Patterson Air Force Base:

Jim Leonard AFWAL/AARF-2 55987 Bldg 23

Ken Greer AFWAL/AARF-2 55987 Bldg 23

Jeff Barnes AFWAL/AARF-2 55987 Bldg 23

Al Bowling AFWAL/AARF-2 55987 Bldg 23

Ralph Pinney AFWAL/AARF-2 55987 Bldg 23

Lloyd Clark AFWAL/AARF-4 53050 Bldg 23

Glenn Williams AFWAL/FIMN 52493 Bldg 26/240

Bob Ballard AFWAL/FIMN 52493 Bldg 26/240

Frank Gondolfi AFWAL/AAWP 55076 Bldg 821

Bryan Kent AFWAL/AAWP 55076 Bldg 821

Conrad Phillippi AFWAL/MLPJ 52334 Bldg 651

John Bankovskis AFWAL/AARI 56361 Bldg 622

Carl Williams AFWAL/FIEE 56078 Bldg 45/93

Mike Fabian AFWAL/FIEE 56078 Bldg 45/93

John Warner AFWAL/FIEE 56078 Bldg 45/93

Bill Griffin ASD/ENAMA 55153 Bldg 125

John Steidle ASD/ENAMA 55153 Bldg 125

Russ Soerens ASD/ENAMA 55153 Bldg 125

Larry Linder AFFDL 55205 Bldg 192

124



Appendix D

This appendix contains listings for the activity

profile generator program (ACTV) and its subroutines (RCORS

and IDGET). The original program was written by Jim

Leonard, AFWAL/AARF-2, WPAFB. The program was modified

slightly during this thesis study to run on the AFIT HP

21MX computer.

125



I

FTN4,L,B
PROGRAM ACTV
DIMENSION FBF(52),IPR(52),IN(3)

C ACTIVITY PROFILE GENERATOR USING SUSPEND ADDRESS
C FROM ID-SEGMENT.
C BY JIM LEONARD
C USAF AVIONICS LAB, WPAFB
C

5 WRITE(1,10)
10 FORMAT(" ACTIVITY PROFILE GENERATOR ",//,

1 " TYPE PROG NAME "

IN( 1)=2H
IN( 2)=2H
IN(3)=2H
READ(1,20) IN

20 FORMAT(3A2)
C GET ADDRESS OF ID SEGMENT

IDSEG=IDGET(IN)
IF (IDSEG.NE.0) GOTO 100
WRITE(1,30)IDSEG

30 FORMAT("IMPROPER PROGRAM NAME, IDSEG= ",18)
GOTO 5

100 WRITE(1,110)
110 FORMAT("TYPE PROFILE BOUNDS, LOWER-UPPER & INTERRUPT

1 TIME(I-9)",/," XXXXX XXXXX X")
NT=0

S20REAI)(1,120)IL,IU,NT
120 FORMAT(2K6,I6)

IF(NT.LE.0)NT=3
C INITIALIZE PROFILE BUFFER

DO 130 I=1,52
FBF(I)=0.

130 CONTINUE
ID=IU-IL+1
INCR=(IU-IL+I)/50
IF(INCR*50.LT.ID)INCR=INCR+I
WIWI=IDSEG+15
IW2=IDSEG+8

C IF PROGRAM IS NOT CURRENTLY ACTiVE DON'T RECORD LOCATION
300 CALL RCORE(IWl,IVAL)

IF(IAND(IVAL,15B).NE.1)GOTO 200
C READ SUSPENDED LOCATION

CALL RCORE(IW2,IVAL)
C CHECK FOR BEFORE BOUNDS

IF (IVAL.GE.IL)GOTO 140
FBF(1)=FBF(1)+I.
GOTO 200

C CHECK FOR BEYOND BOUNDS
140 IF(IVAL.LE.IU)GOTO 150

FBF(52)=FBF(52)+1
GOTO 200

C MARK INTERVAL
150 IVAL=(IVAL-IL)/INCR+2

126



I

FBF(IVAL)=FBF(IVAL)+I.

C TERMINATE MONITORING IF OPERATOR BREAKS
200 IF(IFBRK(IDMY))500,210
210 ISC=0

C WAIT DESIRED INTERVAL
CALL EXEC(12,ISC,1,0,-NT)
GOTO 300

500 WRITE(10,510)IN,IL,IU,INCR
510 FORMAT(" PROGRAM ACTIVITY PROFILE FOR ",3A2,/,

1 " FROM",K8," TO",K8," IN INCREMENTS OF",I8)
515 FORMAT(" INTERVAL NO. FROM TO NO OF HITS

1 ,"NORMALIZED HITS NORMAL ACCUM")
C FIND MAX VALUE OF HISTOGRAM

FMX=-I
TSUM=O
DO 520 I=2,51
TSUM=TSUM+FBF(I)
IF(FMX.LT.FBF(I))FMX=FBF(I)

520 CONTINUE
C EXIT IF NO ACTIVITY IN DESIRED RANGE

IF(FMX.GT.0)GOTO 600
IF((FBF(1)+FBF(52)).GT.0)GOTO 540
WRITE(1,530)

530 FORMAT("NO PROGRAM ACTIVITY RECORDED--AT ALL!!!")
WRITE(10,530)
STOP

540 WRITE(1,550)FBF(1),FBF(52)
550 FORMAT("NO PROGRAM ACTIVITY IN REGION OF INTEREST",!

1 ,"BEFORE=",El3.7," AFTER="E13.7)
WRITE(10,550)FBF(1),FBF(52)

C WRITE TABLE OF ACTIVITY PROFILE
600 WRITE(10,515)

SUM=0.
TSM1=TSUM+FBF(1)+FBF(52)
DO 650 I=1,52
SUM=SUM+FBF(I)/TSM1
FNORM=FBF(I)/FMX
IFR=IL+INCR*(1-2)
ITO=IFR+INCR
IF(I.EQ.I)lFR=0
IF(I.EQ.52)ITO=32767
WRITE(10,610)I,IFR,ITO,FBF(I),FNORM,SUM

610 FORMAT(4X,I3,6X,2K7,FIO.0,F17.8,FI5.5)
650 CONTINUE

C PLOT HISTOGRAM ON PRINTER
WRITE(10,510)IN,IL,IU,INCR
WRITE(10,700)

700 FORMAT(" INTERVAL 0 2 4 6"
1 " 8 1")

C FOR EACH DATA INTERVAL
SUM=-FBF(1)/TSUM
DO 800 J=1,52

S... C CLEAR PRINTER BUFFER
127



DO 710 I=1,51
IPR( I)=2H

710 CONTINUE
C CALCULATE INDEXS

SUM=SUM+FBF (J )/TSUM
INDX=SUM*50.+1. 5
IF((J.NE.1).AND.(J.NE.52))IPR(INDX)=2HII
INORM=50. *FBF(J)/FMX+1.5

C PRINT AN X IF OFF PLOT
IF(INORM.LT. 1)INORM=-1
IF (INORM. GTr.51) INORM=-51

C PRINT AN * IF ON THE PLOT
IF (INORM. GT.0) IPR(CINORM) =2H00
IF (INORM. LT.0) IPR(C-INORM) =2HXX
WRIrE(1O,720)J,(IPRCK),K=1,51)

720 FORMAT(2X,I6,3X,5lAl)
800 CONTINUE

STrOP
END
END$

128



ASMB,L
"* NAM RCORE

* READS AND RETURNS THE CONTENTS OF A SINGLE
* MEMORY LOCATION.

* THIS IS A SUBROUTINE TO THE ACTIVITY PROFILE
* GENERATOR JIM 1,EONARD WROTE.

S* THE ACTIVITY PROFILE SOURCE PROGRAM IS ON FILE &ACTV::20

" * JOHN STEIDLE

ENT RCORE
EXT .ENTR

Iwi NOP ADDRESS OF ADDRESSES OF DESIRED VALUE
IW2 NOP ADDRESS FOR RETURNED CORE VALUE
RCORE NOP

JSB .ENTR GET PARAMETER ADDRESSES
* DEF IWI

LDA IW1,I READ ADDRESS
LDA 0,I READ CONTENTS
STA IW2,I STORE IT
JMP RCORE,I
END

1

°a -

129



FTN4,L
INTEGER FUNCTION IDGET(IN)
DIMENSION IN(3)

C FUNCTION IDGET FINDS THE ADDRESS OF THE ID SEGMENT
C OF THE PROGRAM NAME PASSED BY THE CHARACTER ARRAY
C "IN". THIS FUNCTION IS PERFORMED BY SEQUENTIALLY
C SEARCHING THROUGH THE ID SEGMENTS OF THE SYSTEM
C LOOKING FOR A MATCH ON THE INPUT PROGRAM NAME. WHEN
C THE CORRECT ID SEGMENT IS FOUND, THE ADDRESS OF THE
C SEGMENT IS PASSED BACK IN "IDGET". IF THE SEGMENT
C IS NOT FOUND, "IDGET" IS SET TO ZERO.
C
C
C GET ADDRESS OF ID SEGMENT ADDRESS TABLE IN LOC 1657 OCTAL

IPTR1=1657B
CALL RCORE(IPTR1,IPTR2)

C LOOP TO SEARCH THROUGH ID SEGMENT TABLES
900 CALL RCORE(IPTR2,IDGET)

IF (IDGET .EQ. 0) GOTO 950
IPTR2=IPTR2+1

C POINT TO NAME AREA OF TABLE AND COMPARE THE 3 WORDS
C CONTAINING THE 5 CHARACTER PROGRAM NAME

IP TRI=IDGET+12
CALL RCORE(IPTR1,INAME)
IF (INAME .NE. IN(l)) GOTO 900
IPTR1=IPTR1+1
CALL RCORE(IPTR1,INAME)
IF (INAME .NE. IN(2)) GOTO 900
IPTR1=IPTR1+1
CALL RCORE(IPTR1,INAME)

C COMPARE 5TH CHAR IN UPPER BYTE OF THE WORD.
C IGNORE THE LOWER BYTE.

IF (IABS(INAME-IN(3)) .GT. 255) GOTO 900
950 RETURN

END
END$

013

6

~130

6i



Appendix E

The following are instructions for running ACTV on the

AFIT RTE-III system:

1. ACTV and the program to be tested must be compiled

and loaded prior to running ACTV. If the core image files

already exist (saved from a previous session), type the

following commands:

RP,ACTV

RP,test program name

EX

Any key to get the * prompt

If the relocatable object files (the % files) for ACTV or

the test program have been loaded during the current

session, the corresponding RP command can be ommitted.

2. Set the priority of ACTV to 89 by the following

command:

PR,ACTV,89

Any key to get the * prompt

3. Run ACTV by typing:

RU,ACTV

- 4. ACTV responds:

ACTIVITY PROFILE GENERATOR

-.TYPE PROG NAME

5. Enter the 5-character program name.

6. ACTV responds:

131

- . * -. .,*



TYPE PROFILE BOUNDS, LOWER-UPPER & INTERRUPT

XXXXX XXXXX X TIME (1-9)

7. Enter the octal address bounds of the program

* region ACTV is to monitor and the rate at which the program

is to be interrupted. The smaller the interrupt time

number, the greater the interrupt rate and total "hits" for

the profile. Both the addresses and interrupt rate must be

entered directly below the Xs.

8. Press any key to get the * prompt. Run the

program under test by:

RU,program name

9. The program will execute normally. When it

terminates, type:

BR,ACTV

This will terminate ACTV, and the activity profile will be

printed on the printer.

132



Appendix F

This appendix contains listings for SDRVR, STRES, and

SPEED. SDRVR is a special driver program, which was

written by AFWAL/FIMN personnel, to test the wind tunnel

routines SDRVR and SPEED on the AFT 21MX computer. SDRVR

and SPEED are the original subroutines used in the wind

tunnel control program. The routines here are presented

essentially as they were received from the user. They are

not well commented, and no attempt was made to improve

this.

133



FTN 4, L
C 12 JUL 82

PROGRAM SDRVR
C
C
C

COMMON DDFL(13, 13) ,IZTHM(1) ,CON1(1) ,CON6(1)
DIMENSION IBXNPS(10,18) ,IBXJAK(8),
*STRESS(14) ,YZT(14),YZT1(1O)
REAL MOM(14)
DIMENSION DFL(13,13) ,DFL2(13,4),DFL3(13,3)

C
EQUIVALENCE (DFL(1,7),DFL2),(DFL(1,11),DFL3),

1 (YZT1,YZT(5))
C DATA DFL/

1 .2528E4,-.1750E4,.5417E3,-.4790E2,.1233E2,
1 -.2884E1,.7545E0,-.2028E0,.5681E-1,-.1703E-1,
1 .4409E-2,-.1102E-2,.1837E-3,
2 -. 1750E4,.1968E4,-.9478E3,.1805E3,-.4645E2,
2 .1087E2,-.2843E1,.7644E0,-.2141E0,.6416E-1,
2 -.1662E-1,.4154E-2,.6923E-3,
3 .5417E3,-.9478E3,,.7798E3,-.3674E3,.1297E3,
3 -.3035E2,.7941El,-.2135E1,.5979E0,-.1792E0,
3 .4640E-1,--.1160E-1,.1933E-2,
4 -.4790E2,.1805E3,-.3674E3,.4015E3,-.248lE3,
4 .9002E2,-.2355E2,.6331El,-.1773E1,.5315EO,
4 -.1376E0,.3441E-1,-.5734E-2,
5 .1233E2,-.4646E2,.1297E3,-.2481E3,.2719E3,
5 -.1828E3,.8358E2,-.2247E2,.6293E1,-.1886El,
5 .4884E0,-.1221E0,.2035E-1,
6 -.2886E1,.1087E2,--.3035E2,.9002E2,-.1828E3,
6 .3075E3,-.2823E3,.1136E3,-.3181E2,.9533E1,
6 -.2469E1,.62L72E0,-.1029E0/
DATA DFL2/
7 .7568E0,-.2845E1,.7942E1,-.2355E2,.8358E2,
7 -.2823E3,.3976E3,-.2682E3,.1144E3,-.3427E2,
7 .8876E1,-.2219E1,.3698E0,
8 -.2045E0,.7653E0,-.2135E1,.633lE1,-.2247E2,

48 .1136E3,-.2682E3,.3449E3,-.2705E3,.1231E3,
8 -.3187E2,.7968E1,-.1328E1,
9 .5761E-1,-.2149E0,.5976E0,-.1772E1,.6292E1,
9 -.3181E2,.1144E3,-.2705E3,.4069E3,-.3179E3,
9 .1186E3,-.2965E2,.4942E1,

* .1772E-1,.6570E-1,-.1800E0,.5307E0,-.1885E1,
4 * .9532E1,-.3427E2 ,.1231E3,-.3179E3,.4359E3,

* -.3609E3,.1752E3,-.2921E2/
DATA DFL3/
1 .5690E-2,-.1935E-1,.4937E-1,-.1388E0,.4870E0,
1 -.2465E1,.8871E1 ,-.3187E2,.1186E3,-.3609E3,
I .6241E3,-.4961E3,.1394E3,
2 -.2199E-2,.6440E-2,-.1477E-1,.3634E-1,-.1211E0

*2 .6138E0,-.2215E1,.7965E1,-.2965E2,.1752E3,
2 -.4961E3,.5492E3,-.2049E3

134



3.1394E3,-.2049E3,.9083E2/
C
C
C LINES ADDED r0 REPLACE READS OF DEVICES NOT AVAILABLE
C

DATA IBXNPs/40*0,10*2423,2024,2064,2137,2234,2302,
*2153,2021,1850,1686,1524/

IBXJAK(1) = 2172
IBXJAK(2) = 2365
IBXJAK(3) = 2422
IBXJAK(4) = 2000
IBXJAK(5) = 2000
IBXJAK(6) = 2000
IBXJAK(7) = 0
IBXJAK(8) =0
DO 35 I=1,169

DDFL(I) = DFL(I)
35 CONTINUE

C
C

IZTHM=2000
CON 1=5E-4
CON6=5. 4932E-4

C
DO 2000 IR0D=5,6

CALL STRES(1,IROD,IBXJAK,IBXNPS(1,IROD),STRESS,MOM)
IBXJAK(1) = 2000
IBXJAK(2) =2000
IBXJAK(3) = 2000

2000 CONTINUE
END

135



C
C

SUBROUTINE STRES(IFCN,KIROD,IBXJAK,IDAiTA,STRESS,MOM,
* IZXNPP)

C
C
C FCN1l FOR THUMWHEEL
C FCN=2 FOR POTS
C LAST PARAMETE~R IS NOT REQUIRED FOR THUMWHEELS
C
C

COMMON DDFL(13, 13) ,IZTHM(1) ,CON1(1) ,CON6(1)
DIMENSION IBXJAK(8) ,STRESS(14) ,YZT(14) ,YZT1(10),

*IDATA(10) ,IBXNPP(10)
REAL JACK(14),LOAD(14),MOM(14)
EQUIVALENCE (YZT1,YZT(5))
DATA JACK/0. ,6.,11.,16., 21.,26.,31. ,33.5,36.,38.5,41.,

*44.69,48. 38,52.07/
YZT( 1)=0
IF (IFCN.EQ.3) GO To 3000
IF (KIROD.GT.9) GO TO 100
YZT(2)= (IBXJAK(1)-IZTHM)* CONi
YZT(3)= (IBXJAK(2)-IZTiM)* CONi
YZT(4)= (IBXJAK(3)-IZTHM)* CONi
GO TO 200

100 YZT(2)= (IBXJAK(4)-IZTHiM)* CONi
YZT(3)= (IBXJAK(5)-IZTHiM)* CON1
YZT(4)= (1BXJAK(6)-IZTHM)* CONi

200 CONTINUE
IF (IFCN.EQ.2) GO TO 2000

1000 DO 1050 I=1,10
1050 YZT1(I)= (IDATA(I)-IZTHiM)* CONi
1500 CALL SPEED(LOAD,MOM,STRESS,YZT,JACK)

RETURN
*2000 DO 2050 I=1,10

2050 YZT1(I)= (IDATA(I)-IZXNPP(I))* CON6
CALL SPEED(LOAD,MOM,STRESS,YZT,JACK)
R ETU)RN

3000 CALL SPEED(LOAD,MOM,STRESS,YZT,JACK)
RETURN
END
END $

136



ASMB, L
NAM SPEED,7
EXT .ENTR
ENT SPEED
COM DDFL(338)

LOAD BSS 1
mom BSS 1
STRES 8SS 1
YZT BSS 1
JACK BSS 1
SPEED NOP

JSB .ENTR
DEF LOAD
LDA LOAD
I NA
INA
STA .LOD1
STA .LOD2
STA .LOD3
STA .LOD4
LDA YZT
I NA
INA
STA .YZT
LDA JACK
I NA
INA
STA .JCK1
STA .JCK2
STA .JCK4
LDA MOM
STA .MOM1
STA .A
INA
INA
s'rA .MOM3
LDA .DFL
STA .DDFL

* COMPUTE RESULTS BASED ON DEFLECTrIONS ALONE
4 * FIND LOADS

LDA =D-13
STA CNT2

LOOP2 LDA .YZT
STA ..YZT
DLD .DDFL,l

*OCT 105040 FMP
.YZT BSS 1

DST .LOD1,I
ISZ ..YZT
ISZ .YZT
ISZ .DDFL

A ISZ .DDFL
LDA =D-12
STA CNT1

137



rLOOPi DLD .DDFL,I
OCTr 105040 FMP

..YZT BSS 1
OCT 10500 FAD

.LOD1 BSS 1
DST .LOD1,I
ISZ .YZT
ISZ .YZT
ISZ .DDFL
ISZ .DDFL
ISZ CNT1

-. JMP LOOPI
ISZ LI.OD1
ISZ .LOD1
ISZ CNT2
JMP LOOP2

* FIND MOMENT DISTRIBUTION AT JACKS
LDA =D-13
STA CNT1

* - CLA
CLB

LOOP3 OCT 105020 FSB
.LOD2 BSS 1

ISZ .LOD2
ISZ .LOD2
ISZ CNT1
JMP LOOP 3
DST LOAD,I
CLA
CLB
DST .MOM1.1
LDA =D-13
STA CNT2

LOOP4 DLD .JCKA,I
OCT 105040 FMP

LOD3 BSS 1
OCT 105000 FAD

.MOM1 BSS 1
DST .MOM1,1
ISZ .JCK1
ISZ .JCK1
.ESZ .LOD3
ISZ .LOD3
ISZ CNT2
JMP LOOP 4

4DLD LOAD,I
DST TEMPi
DLD MOM,I
DST TEMP 2
LDA =D-12
STA CNT1

LOOP5 DLD TEMPi
OCT 10500 FAD

LOD4 BSS 1
138



DST TEMPI
DLD .LOD4,I
OCT 105040 FMP

.JCK4 BSS 1
DST TEMP3
DLD TEMP2
OCT 105020 FSB
DEF TEMP3
DST TEMP2
DLD .JCK4,I
OCT 105040 FMP
DEF TEMPI
OCT 105000 FAD
DEF TEMP2
DST .MOM3,I
ISZ .MOM3
ISZ .MOM3
ISZ .LOD4
ISZ .LOD4
ISZ .JCK4
ISZ .JCK4
ISZ CNT1
JMP LOOP5

* STRESS AT JACK CENTERLINE AND WALL
LDA .MP
STA ..M
LDA STRES
STA ..S
LDA =D-13
STA CNT2

LOOP7 DLD ..A,I
ISZ ..A
ISZ ..A
SSA
CMA,INA
OCT 105040 FMP

..M BSS 1
DST ..S,I
ISz ..S
ISz ..S
ISZ ..M
ISZ ..M
ISZ CNT2
JMP LOOP7

* JMP SPEED,I
..DFL BSS 1
.JCK1 BSS 1
.JCK2 BSS 1
.JCK3 BSS 1
.MOM3 BSS 1

" CNT1 BSS 1
CNT2 BSS 1

.-.. A BSS 1
..S BSS 1

139

* -. -



.MP DEF MP
MP DEC 148.63,148.63,148.63

DEC 594.5,594.5,594.5
DEC 2378.,2378.,2378.,2378.
DEC 2378.,594.5,594.5

TEMP1 BSS 2
TEMP2 BSS 2
TEMP3 BSS 2

END SPEED

140



Appendix G

This appendix contains listings for MSPED and LOADS.

MSPED is a version of SPEED modified to invoke a

microprogram substitution for LOOP1 and LOOP2 of SPEED.

Only the code up to and including the modifications are

shown here. The remainder of the code is as in the SPEED

listing of Appendix F. Also, the program name remains as

"SPEED" to minimize changes to calling routines. Only the

file names are changed to MSPED. LOADS is the microprogram

subsitution for LOOP1 and LOOP2.

141

21-



ASMB, L
NAM SPEED, 7

*EXT . ENTR
ENT SPEED

*COM DDFL(338)
LOAD BSS 1
mom BSS 1
STRES BSS 1
YZT BSS 1
JACK BSS 1
SPEED NOP

JSB .ENTR
DEF LOAD
LDA LOAD
INA
INA
STA .LOD1
STA .LOD2
STA .LOD3
STA .LOD4
LDA YZT
INA
INA
STA .YZT
LDA JACK
I NA
INA
STA .JCK1
STA .JCK2
STA .JCK4
LDA MOM
STA .MOM1
STA .A
INA
INA
STA .MOM3
LDA .DFL
STA .DDFL

* COMPUTE RESULTS BASED ON DEFLECTIONS ALONE
4 * FIND LOADS BY INVOKING THlE LOADS MICROPROGRAM

LOADS OCT 105600
.DDFL BSS 1
.YZT BSS 1
.LOD1 BSS 1

* FIND MOMENT DISTRIBUTION AT JACKS

o THE CODE HERE IS IDENTICAL TO SPEED

END SPEED

142



MICMX,L,R 21MX
$CODE=%LOADS::20,REPLACE OBJECT TO DISK

ORG 6000B
i ****************************************** ************

" * LOADS MICROPROGRAM *

* THIS MICROPROGRAM IS A SUBSTITUTE FOR THE ASSEMBLY *
* LANGUAGE CODE SEGMENT LABELED LOOP2 IN THE ROUTINE *
*CALLED SPEED. WITH THIS ROUTINE WRITTEN INTO WCS,*
• THE LOOP2 CODE SEGMENT IN SPEED (FROM THE LABEL *
* "LOOP2" TO THE "JMP LOOP2" INSTRUCTION) CAN BE *
• REPLACED BY THE FOLLOWING INSTRUCTIONS: *

* LOADS OCT 105600 CALL THE LOADS MICROPROGRAM *
• .DDFL BSS 1 ADDRESS OF THE DDFL ARRAY *
* .YZT BSS 1 ADDRESS OF THE YZT ARRAY *
* .LOD1 BSS 1 ADDRESS OF THE LOAD ARRAY *

,.* *

*NOTE THAT .DDFL, .YZT, AND .LOD1 ARE ALREADY DEFINED*
*IN SPEED. THEY MUST BE MOVED TO THE LINES FOLLOWING *
*THE "LOADS OCT 105600" INSTRUCTION AS SHOWN ABOVE. *
*THE ORDER IS IMPORTANT AS THESE ARE PARAMETERS FOR *
*THE MICROPROGRAM. *

FLD EQU %7031 ROM FLT PNT LOAD ROUTINE
PACK EQU %7052 ROM FLT PNT PACK ROUTINE

START JMP LOADS JUMP TO MAIN MICROPROGRAM
ORG 6002B USE 6001B FOR DEBUG BKPNT

• READ CALLING PARAMETERS FROM MEMORY AND STORE IN *
• SCRATCH REGISTERS: .DDFL -- > S3 *
* .YZT -- > S12 *
• .LOD1 -- > S8 *
• ALSO INITIALIZE OUTER LOOP COUNTER REGISTER X TO 13*

LOADS READ INC M P READ DDFL ADDR FROM MEMORY
INC P P POINT TO YZT ADDRESS
PASS S3 TAB PUT DDFL ADDRESS INTO S3

READ INC M P READ YZT ADDR FROM MEMORY
INC P P POINT TO LOAD ARRAY ADDR
PASS S12 TAB PUT YZT ADDRESS INTO S12

READ INC M P READ LOAD ADDR FROM MEMORY
IMM CMLO X %362 LOOP2 CNTR=13(I'S CMP 362)

PASS S8 TAB PUT LOAD ADDRESS INTO S8

il ****************** ************** **********************

* MATRIX MULTIPLICATION LOOP -- THIS CODE SEGMENT *
• PERFORMS THE FLOATING POINT MATRIX MULTIPLICATION *
* OF THE 13X13 DDFL MATRIX BY THE 14Xl Yzr MATRIX. *

143



* THE FIRST ELEMENT OF THE YZT MATRIX IS NOT USED, *
* MAKING IT EFFECTIVELY A 13XI MATRIX. THE RESULT OF *
* THE MATRIX MULTIPLICATION IS THE 14XI MATRIX CALLED*
* LOAD (1ST ELEMENT AGAIN NOT USED).

LOOP2 IMM CMLO A %377 PUT A ZERO IN A-REG
MPCK INC M S8 PUT LOAD ADDR INTO M-REG

WRTE PASS TAB A CLEAR WORD1 OF LOAD ELEMNT
INC B S8 POINT B 'O WORD2 OF LOAD

MPCK INC M B & PUT ADDR INTO M-REG
WRTE PASS TAB A CLEAR WORD2 OF LOAD ELEMNT
IMM CMLO Y %362 LOOP1 CNTR=13(1'S CMP 362)

PASS S4 S12 PUT YZT ADDR INTO S4
LOOP1 READ INC M S3 READ 1ST WORD DDFL ELEMENT

INC S3 S3 POINT TO 2ND DDFL WORD
PASS A TAB PUT 1ST WORD INTO A-REG

READ INC M S3 READ 2ND WORD OF DDFL
INC S3 S3 POINT TO NEXT DDFL ELEMENT
PASS B TAB PUT 2ND WORD INTO B-REG

* "JMP" RATHER THAN "JSB" TO FMPY AND FADD ROUTINES *
* BECAUSE THESE ROUTINES WILL DESTROY TH RETURN *
* ADDRESS BY CALLING OTHER ROUTINES. RETURN IS TO THE*
* INSTRUCTIONS LABELED "RTNFMPY" AND "RTNFADD" *

***************************** ******** * ******* *

JMP FMPY MULTIPLY DDFL&YZT ELEMENTS
* PRODUCT GOES INTO A/B REGS

RTNFMPY JMP FADD ADD DDFL&YZT PROD TO LOAD
* SUM GOES INTO A/B REGS

RTNFADD MPCK INC M S8 PUT LOAD ADDR INTO M-REG
WRTE PASS TAB A WRITE A-REG TO LOAD ADDR

INC S8 S8 POINT TO 2ND WORD OF LOAD
MPCK INC M S8 PUT ADDRESS INTO M-REG

WRTE PASS TAB B WRITE B-REG TO 2ND WORD
DEC S8 S8 POINT BACK TO 1ST WORD
INC S4 S4 POINT TO NEXT YZT WORD
INC S4 S4
DEC Y Y DECREMENT LOOP1 COUNTER

JMP CNDX TBZ RJS LOOP1 IF CNTR NOT=O GO TO LOOP1
INC S8 S8 POINT TO NEXT LOAD ELEMENT
INC S8 S8
DEC X X DECREMENT LOOP2 COUNTER

JMP CNDX TBZ RJS LOOP2 IF CNTR NOT=O GO TO LOOP2
RTN INC P P RETURN TO SPEED

**FLOATING POINT MULTIPLY AND MULTIPLY (MPYX)

* ROUTINES. THESE ROUTINES ARE TAKEN FROM APPENDIX E *
* OF THE HP MICROPROGRAMMING 21MX COMPUTERS OPERATING*
* AND REFERENCE MANUAL. THESE ROUTINES ALSO RESIDE IN*
* CONTROL STORE ROM, BUT IT IS NECESSARY TO REPRODUCE*
* THEM IN WCS TO AVOID THE PROBLEM OF LEVELED SUB- *

* ROUTINE CALLS IN THE M-SERIES. FMPY HAS BEEN MODI- *

144

I-



* FIED SLIGHTLY TO HANDLE A PARAMETER ADDRESS IN A *
* SCRATCH REGISTER RATHER THAN POINTED AT BY THE P *
* REGISTER (PROGRAM COUNTER). ALSO, INDIRECT ADDRES- *
* SING IS NOT USED. MPYX IS UNCHANGED. *

-* ******** ****** *** *** *********** ** ******************* *

FMPY READ INC M S4 READ IST PARAMETER WORD
JSB FLD STORE ARGS IN SCRATCH REGS

INC S9 S9
PASS L S5 FORM EXP1+EXP2+I
ADD S9 S9 AND SAVE IN S9

R1 PASS A 5l0 FORM (WORD1 LOBITS)/2 IN A
PASS S2 S7 PASS WORD2 HIBITS INTO S2

JSB MPYX JMP TO MPY SUB & RTN WITH
PASS S5 B HIBITS IN B & SAVE IN S5
PASS S2 SIl PASS WORD1 HIBITS INTO S2
PASS Sll A LOBITS INTO A. SAVE INTO S

R1 PASS A S6 FORM (WORD2 LOBITS)/2 IN A
JSB MPYX JMP TO MPY SUB & RTN WITH

PASS L A LOBITS IN A & PASS INTO L
ADD A Sil ADD BOTH LOBITS. CHK FOR C

JMP CNDX COUT RJS *+2 (ELSE TRUNCATE DIGITS)
INC B B IF COUT, BUMP HIBITS
PASS L B ADD HIBITS & SAVE IN Sll
ADD SlI S5
PASS A S7 PASS WORD2 HIBITS INTO A

JSB MPYX JMP TO MPY SUB & RTN WITH
R1 PASS A A LOBITS IN A. SAVE LOBITS/2
COV PASS L A ADD LOBITS/2 TO HIBITS SUM

ENV Li ADD A SIlI SHIFT Li TO REORIENT
JMP CNDX AL15 RJS *+3 CHECK FOR CAR' Y INTO OR
JMP CNDX OVFL *+4 BORROW FROM HIBITS &

DEC B B ADJUST ACCORDINGLY
JSB PACK
JMP RTNFMPY RTN TO MAIN MICROPROGRAM

INC B B CAN'T OVERFLOW FROM HIBITS
JSB PACK
JMP RTNFMPY RTN TO MAIN MICROPROGRAM

MPYX COV PASS Sl A SI<-A(MULTIPLICAND). CLEAR
ZERO B CLEAR B FOR MULTIPLY
PASS L S2 L<-S2(MULTIPLIER)

RPT PASS CNTR B CLEAR COUNTER & SET REPEAT
MPY R1 ADD B B MPY STEP (Xi6), (B,A)<-*L+

PASS Sl TEST MULTIPLICAND
JMP CNDX AL15 RJS *+2 JUMP IF POSITIVE

SUB B B UNDO LAST MPY STEP IF NEG
PASS S2 TEST MULTIPLIER

JMP CNDX AL15 RJS RETURN JMP IF POSITIVE
PASS L Si L<-MULTIPLICAND

RTN SUB B B B<-MINUS L (CORRECTS NEG
-* MULT)

* RETURN RTN RETURN TO CALLING ROUTINE

145

.|



K ~*********************************************** *******

--' -* FLOATING POINT ADD ROUTINE. THIS ROUTINE IS ALSO *
* TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING *
* 21MX COMPUTERS OPERATING AND REFERENCE MANUAL. IT *
* ALSO RESIDES IN CONTROL STORE ROM BUT IS DUPLICATED*
* IN WCS TO AVOID THE PROBLEM OF LEVELED SUBROUTINE *

* CALLS IN THE M-SERIES. FADD HAS BEEN MODIFIED TO *

* EXCLUDE THE CODE FOR FLOATING POINT SUBTRACT AND TO*
* ALLOW A PARAMETER ADDRESS IN A SCRATCH REGISTER *
* RATHER THAN THE P REGISTER. INDIRECT ADDRESSING IS *

* NOT USED, SO THE CALL TO "INDIRECT" IS OMITTED. *

* ALSO, SCRATCH REGISTER S2 IS USED IN PLACE OF S8 TO*
* FREE S8 FOR USE IN THE MAIN PROGRAM. *

FADD READ INC M S8 READ 1ST PARAMETER WORD
JSB FLD UNPACK WORDS INTO SCR REGS

PASS B S7 CHECK FOR WORD2=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S5 %200 IF SO, MAKE EXP MOST NEG

PASS 1l CHECK FOR WORD1=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S9 %200 IF SO, MAKE EXP MOST NEG

DIFR PASS A S6
PAS L S5 FIND DIFF IN EXPS

CLFL SUB S2 S9 & STOR" IN S2, FLAG=O
JMP CNDX TBZ ADD2 IF DIFF=0, JMP TO ADD STEP
JMP CNDX AL15 RVRS IF NEG, WORD2>WORD1

CMPS S2 S2 FORM -DIFF
INC S2 S2 & STORE -DIFF IN S2

JMP SWAMPCHK
RVRS PASS L B HOLD B IN L

PASS B Sli WORD1<WORD2, FILL IN B,A
PASS A Slo WITH E11,S10
PASL Sli ALSO FILL Sl1,SI0,S9
PASS Sl0 S6 WITH B,S6,S5
PASS S9 S5

SWAMPCHK IMM LOW L %350 FORM -30B8 IN L
SUB S2 IF -DIFF>-31,RTN WITH

• LARGER #
JMP CNIDX AL15 OUT JMP TO RESTORE A,B

SHIFT ARS R1 PASS B B NOW START SHIFT LOOP
INC S2 S2 INC COUNTER

JMP CNDX TBZ RJS SHIFT LOOP UNTIL DONE
ADD2 COV PASS L Slo PASS LOBITS INTO L

ADD A A ADD & CHECK FOR COUT
JMP CNDX COUT RJS *+3 IF NOT, JUMP
IMM HIGH L %0 CLR L(15) FOR OVFL
ENV INC B B IF SO,INC HIBITS & ENABLE

, OVERFLOW

CLFL PASS L S1l FLAG=O
ENV ADD B B ADD HIBITS & ENABLE OVFL

* JMP CNDX OVFL RJS PKSUB IF NO OVFL, RETURN
JMP CNDX AL15 *+2 OVFL IMPLIES SIGN CHANGE

146



STFL SO FLAG=U IF ALl5=0
- LWF R1 PASS B B DO FULL WORD SHIFT

LWF RI PASS A A USING FLAG REG TO INJECT
* SIGN

INC S9 S9 BUMP EXP

PKSUB JSB PACK REPACK A,B REGS
JMP RTNFADD RTN TO MAIN MICROPROGRAM

OUT PASS B SI PASS MUCH LARGER WORD INTO
• B,A

PASS A Slo
JSB PACK
JMP RTNFADD RTN TO MAIN MICROPROGRAM
END

.4

147



Appendix H

This appendix contains the listing for WCSLD. This

program was used to load the LOADS microprogram into WCS on

the AFWAL/FIMN HP 21MX. The microprogram object code is

predefined in a buffer, and the buffer is output to the WCS

two words at a time. The program was run under a DOS III

operating system which had not been configured for

microprogramming. The program will not run on the AFIT RTE

III system because of the installed memory protect option.

The direct I/O instructions (STF, STC, OTA, OT8, LIA, LIB)

cause memory protect violations.

148

I¢



ASMB, L
NAM WCSLD,3
ENT WCSLD

:1-2 *

* WCSLD WRITES A BUFFER CONTAINING PRESTORED MICROCODE OUT
* TO WCS. ONCE THE MICROCODE IS WRITTEN TO WCS, THE PROGRAM
* READS THE MICROCODE FROM WCS, COMPARES IT WITH THE CODE
* THAT WAS OUTPUT, AND WRITES THE INPUT CODE INTO ANOTHER
• BUFFER. IF A WORD DOES NOT COMPARE, AN ERROR COUNTER IS
• INCREMENTED. THE MICROCODE IS WRITTEN OUT 2 WORDS AT A
* TIME. THE UPPER 8 BITS OF THE A-REG CONTAINS THE WCS
• ADDRESS (0-377B8), AND THE LOWER 8 BITS OF THE A-REG
• CONTAINS THE UPPER 8 BITS OF THE MICROWORD. READING IS ALSO
• DONE 2 WORDS AT A TIME. THE WCS ADDRESS IS FIRST OUTPUT TO
• THE BOARD, AND THEN THE MICROWORD AT THAT ADDRESS IS READ
* IN. THE ADDRESS IS NOT READ BACK IN.

*

SC EQU 10B WCS SELECT CODE
WCSLD NOP

STF SC INIT DIRECTION FF
LDA =B-206 # OF MICROWORDS IN BUFFER
STA CNT

• WRITE MICROWORDS OUT TO WCS

WRLP DLD .OBF1,I WRITE LOOP
IOR WCSAD "OR" IN WCS ADDRESS

OTA SC OUTPUT MICROWORDS
OTB SC
STC SC WRITE PULSE
ISZ .OBF1 POINT TO NEXT MiCROWORD
ISZ .OBF1
LDA WCSAD
ADA =B400 BUMP WCS ADDR BY 1
STA WCSAD
ISZ CNT
JMP WRLP

*

• NOW READ THE MICROCODE BACK IN AND COMPARE
*

CLA 1ST WCS ADDRESS = 0
STA WCSAD
LDA =B-206
STA CNT

RDLP STF SC INIT DIRECTION FF
LDA WCSAD GET WCS ADDRESS
OTA SC OUTPUT ADDRESS TO WCS
STF SC REINIT FF
LIA SC INPUT MICROWORD

* _ LIB SC
CPA .OBF2,I DO COMPARES
JMP BCOMP

149

4t



ISZ ERCNT BUMP ERROR COUNT
BCOMP ISZ .OBF2 POINT TO 2ND WORD

C .OBF2,I
JMP STWRD
ISZ ERCNT BUMP ERROR COUNT

STWRD DST .IBF,I STORE MICROWORDS
ISZ .IBF POINT TO NEXT POSITION
ISZ .IBF
ISZ .OBF2
LDA WCSAD GET WCS ADDRESS
ADA =B400 BUMP IT BY 1
STA WCSAD
ISZ CNT
JMP RDLP

CNT OCT 0 LOOP COUNTER
WCSAD OCT 0 WCS ADDRESS
ERCNT OCT 0 ERROR COUNTER
.IBF DEF IBUFF INPUT BUFFER ADDRESS
.OBF1 DEF OBUFF OUTPUT BUFFER ADDRESS
.OBF2 DEF OBUFF ANOTHER ONE
* START OF "LOADS" MICROCODE
OBUFF OCT 321,100130,301,170351,220,074457

OCT 000,075717,017,101117,220,074457
OCT 000,075717,017,101557,220,074457
OCT 357,145617,017,101357,357,176557
OCT 000,056461,177,126017,000,056517
OCT 000,024461,177,126017,357,145657
OCT 017,167157,220,044457,000,045117
OCT 017,100557,220,044457,000,045117
OCT 017,100517,321,102530,321,105370
OCT 000,056461,177,126017,000,057357
OCT 000,056461,177,124017,007,157357
OCT 000,047157,000,047157,007,173657
OCT 320,001171,000,057357,000,057357
OCT 007,171617,320,000571,000,075736
OCT 220,046457,301,141470,000,061417
OCT 017,150157,004,161417,017,162544
OCT 017,155057,301,104530,017,125217
OCT 017,165057,017,127517,017,152544
OCT 301,104530,017,126157,004,164557
OCT 321,003571,000,024517,017,124157
OCT 004,151517,017,154557,301,104530
OCT 017,126544,017,126154,244,164542

* OCT 322,004271,325,044371,007,124517
OCT 301,142530,321,101530,000,024517
OCT 301,142530,321,101530,017,127014
OCT 001,136517,017,142157,017,124255
OCT 014,124504,017,140757,322,005131
OCT 003,024517,017,142757,322,005331

4 - -OCT 017,140157,003,024536,017,136776
OCT 220,056457,301,141470,017,154517
OCT 320,005631,346,001217,017,164757

150



OCT 320,005771,346,001417,017,152557
OCT 017,150157,003,061051,320,047171

* -OCT 322,046371,010,043057,000,043057
OCT 321,106670,017,124157,017,164517
OCT 017,162557,015,037517,017,153457
OCT 017,151417,347,120157,003,042757
OCT 322,050131,037,124504,000,043057
OCT 320,007031,017,162154,004,126557
OCT 321,007431,340,000157,240,024517
OCT 017,164151,244,124517,325,001031
OCT 322,047671,017,136750,157,124504
OCT 157,126544,000,061417,301,142530
OCT 321,101570,017,164517,017,162557
OCT 301,142530,321,101570

*END OF "LOADS" MICROCODE
IBUFF BSS 414B INPUT BUFFER

END WCSLD

151



Appendix I

This appendix contains listings for CDRVR and CALC.

CDRVR is a special driver program, which was written to

test the laser materials modeling program routine CALC on

the AFIT 21MX computer. CDRVR provides all the inputs to

CALC which would normally come from a potentiometer board

on the AFWAL/MLPJ computer.

152

1•



6 AUG 82
PROGRAM CDRVR

C

C CDRVR IS A TEST DRIVER PROGRAM FOR THE SUBROUTINE CALC, A
C ROUTINE WHICH CALCULATES THE REAL AND IMAGINARY PARTS OF
C REFRACTIVE INDEX, A CHARACTERISTIC MEASURE OF LASER
C MATERIALS. CDRVR IS USED TO DRIVE CALC ONLY FOR THE
C PURPOSE OF MAKING TIMING MEASUREMENTS ON CALC. CALC IS ONE
C ROUTINE OF SEVERAL USED IN A LASER MODELING PROGRAM
C DEVELOPED BY AFWAL/MLPJ.
C

COMMON IXO(150),IYO(150),B(30),G(30),IA(30),IQ(20)
REAL BB(30),F,N,K
INTEGER I,JJ

C
C B(30) -- AN ARRAY CONTAINING PARAMETERS NORMALLY INPUT

FROM A 30-POT POTENTIOMETER BOARD
C N -- THE REAL PART OF THE REFRACTIVE INDEX
C K -- THE IMAGINARY PART OF THE REFRACTIVE INDEX
C F -- RADIATION FREQUENCY
C JJ -- THE NUMBER OF OSCILLATORS USED IN THE REFRACTIVE

INDEX CALCULATION
C

DATA BB/1.0,800.0,1.0,1.0,800.0,1.0,1.0,800.0,1.0,
* 1.0,800.0,1.0,1.0,800.0,1.0,1.0,800.0,1.0,1.0,800.0,
* 1.0,1.0,800.0,1.0,0.0,400.0,100.0,2.0,0.5,0.0

DATA JJ/8
C
C COPY DATA FROM DUMMY BB ARRAY TO B ARRAY IN COMMON AREA

DO 50 I=1,30
B(I)=BB(I)

50 CONTINUE
C
C PERFORM CALCULATIONS FOR FREQUENCIES FROM 1000 TO 200 IN
C STEPS OF 40 TO MAKE APPROXIMATELY 20 CALCULATIONS.
C

DO 100 I=1000,200,-40
F=1.0*i
CALL CALC(B,JJ,F,N,K)
WRITE(10,200)F,N,K

200 FORMAT(F20.9,2X,F20.9,2X,F20.9)

100 CONTINUE
END

153

I



SUBROUTINE CALC(B,JJ,F,CII,CI2)

C
C SUBROUTINE CALC CALCULATES THE REAL AND IMAGINARY PARTS OF

C THE REFRACTIVE INDEX OF A LASER MATERIAL SIMULATED BY

C PARAMETERS INPUT FROM A POTENTIOMETER BOARD. THE
C CALCULATION IS PERFORMED BY EVALUATING EQUATIONS FOR

C (N*N - K*K) AND (2*N*K) AND THEN SOLVING THESE TWO

C EQUATIONS SIMULTANEOUSLY FOR N AND K (ClI AND C12)..

C
COMMON IXO(150),IYO(150),B(30)
REAL Cl,C2,C3,C4,C5,C6,C7,C8,C9,CIO,ClI,C12,C13
INTEGER F2,J1,J2,J3

C
C CI-C13 -- USED FOR INTERIM RESULTS IN EVALUATION OF THE

C TWO LONG EQUATIONS
C F2 -- FREQUENCY (F) SQUARED

C Ji-J3 -- INDICES OF ARRAY B USED TO PICK OUT THREE

C DIFFERENT PARAMETERS -- DAMPING FACTOR, FREQUENCY

C OF RESONANCE OF THE ITH OSCILLATOR, AND STRENGTH

C OF RESONANCE
C

F2=F*F
C5=0.0
C6=0.0
DO 100 J=1,JJ

J3J* 3
J2=Jl-i
Jl=J2-1
CI=B(JI)*F
C2=B(J2)*B(J2)
C3=C2-F2
C4=(B(J3)*C2)/(C3*C3+CI*CI)
C5=C5+C3*C4
C6=C6+CI*C4

100 CONTINUE
C

C7=B(27)*B(27)+F2
C8=B(26)*B(26)

C C9=N*N-K*K
C9=B(28)+C6-B(29)*C8/C7

C C10=2*N*K
CIO=C6+3(29)*B(27)*C8/(F*C7)

C NOW SOLVE ThESE 2 EQUATIONS FOR N AND K (C12 AND C13)
CII=0.5*(-C9+SQRT(C9*C9+CI0*CI0))
C12=SQRT(C9+Cl)
C13=SQRT(CII)
RETURN
END
END$

154

.. ...



Appendix J

This appendix contains listings for CALC, ACALC, and

MCALC. The CALC in this listing is the same as in Appendix

I except that the DO loop has been replaced by a call to

ACALC. ACALC is an assembly language program which

interfaces CALC to MCALC. MCALC is the microprogram which

performs the function previously performed by the DO loop.

CALC is again driven by CDRVR as shown in Appendix I.

p.-

i -

i!155

U-



SUBROUTINE CALC(B,JJ,F,CII,CI2)

C SUBROUTINE CALC CALCULATES THE REAL AND IMAGINARY PARTS OF
C THE REFRACTIVE INDEX OF A LASER MATERIAL SIMULATED BY
C PARAMETERS INPUT FROM A POTENTIOMETER BOARD. THE
C CALCULATION IS PERFORMED BY EVALUATING EQUATIONS FOR
C (N*N - K*K) AND (2*N*K) AND THEN SOLVING THESE TWO
C EQUATIONS SIMULTANEOUSLY FOR N AND K (Cll AND C12)..

COMMON IXO(150),IYO(150),B(30)
REAL Cl,C2,C3,C4,C5,C6,C7,C8,C9,C1O,Cll,C12,C13,F2
INTEGER Jl,J2,J3

C
C Cl-C13 -- USED FOR INTERIM RESULTS IN EVALUATION OF THE
C TWO LONG EQUATIONS
C F2 -- FREQUENCY (F) SQUARED
C Ji-J3 -- INDICES OF ARRAY B USED TO PICK OUT THREE
C DIFFERENT PARAMETERS -- DAMPING FACTOR, FREQUENCY
C OF RESONANCE OF THE ITH OSCILLATOR, AND STRENGTH
C OF RESONANCE
c
C EVALUATE THE TWO EQUATIONS OVER JJ OSCILLATORS.
C THIS IS DONE BY MICROPROGRAM MCALC WHICH IS INVOKED
C BY THE ASSEMBLY LANGUAGE ROUTINE ACALC. RESULTS ARE
C RETURNED IN C5 AND C6.

F2=F*F
C5=0.o
C6=0.0
CALL ACALC(JJ,F,F2,C5,C6)
C7=B(27)*B(27)+F2
C8=B(26)*B(26)

C C9=N*N-K*K
C9=B(28)+C6-B(29)*C8/C7

C C10=2*N*K
CIO=C6+B(29)*B(27)*C8/(F*C7)

C NOW SOLVE THESE 2 EQUATIONS FOR N AND K (C12 AND C13)
CII=0.5*(-C9+SQRT(C9*C9+CIO*CIO))
C12=SQRT(C9+ClI)
C13=SQRT(C1I)

4RETURN
END
END$

156

4



ASMB, L
NAM ACALC, 7
EXT . ENTR
ENT ACALC
COM IXO(150) ,IYO(150) ,B(60)

.Ji BSS 1
.F BSS 1

..F2 BSS 1.

..C5 BSS 1

..C6 BSS 1
ACALC NOP

JSB .ENTR
DEF .JJ
DLD .F GET F AND F2 ADDRESSES
DST .F COPY INTO .F AND .F2
DLD ..C5 GET C5 AND C6 ADDRESSES
DST .C5 COPY INTO .C5 AND .C6
LDX .B PUT B ARRAY ADDRESS INTO X-REG
LDY .JJ,l PUT JJ INTO Y FOR LOOP COUNT IN MCALC
LDA .TMP1 PUT 'rMP1 ADDRESS INTO A-REG
LDA .TMP2 PUT TMP2 ADDRESS INTO B-REG

I4CAL1 OCT 105620 INVOKE MCALC AT 1ST ENTRY POINT
F BSS 1 ADDRESS OF PARAMETER~ F

.F2 BSS 1 ADDRESS OF PARAMETER F2
FDIV OCT 105060 INVOKE FLT PNT DIVIDE ROM ROUTINE
.Clc3 DEF C1C3 ARGUMENT FOR FDV
MCAL2 OCT 105621 INVOKE MCALC AT 2ND ENTRY POINT
.C5 BSS 1 OUTPUT PARAMETERS OF MCALC
.c6 BSS 1

JMP ACALC,I RETURN TO CALC
B DEF B ADDRESS OF B ARRAY

.TMP1 DEF TMP1 ADDRESS OF TMP1

.TMP2 DEF TMP2 ADDRESS OF TMP2
TMP1 BSS 2 TMP1-TMP3 ARE WORKING
TMP2 BSS 2 LOCATIONS FOR MCALC
TMP3 BSS 2 TMP3 MUST FOLLOW TMP2
C1C3 BSS 2 HOLDS C1*C1+C3*C3

END ACALC

157



MICMX,L,R 21MX
$CODE=%MCALC::20,REPLACE OBJECT TO DISK

ORG 6000B

.. * *

*-, MCALC MICROPROGRAM *

* THIS MICROPROGRAM IS A SUBSTITUTE FOR THE FOLLOWING*

* LOOP IN THE FORTRAN SUBROUTINE CALC: *
• DO 300 J=1,JJ *

• J3=J*3 *

* J2=Jl-1 *

• Jl=J2-1 *

• CI=B(JI)*F *

* C2=B(J2)*B(J2) *

• C3=C2-F2 *

' . * C4=(B(J3)*C2)/(C3*C3+C1*Cl) *
• C5=C5+C3*C4 *

* C6=C6+CI*C4 *
* 300 CONTINUE *

• MCALC IS INVOKED BY FIRST CALLING AN ASSEMBLY *

• LANGUAGE ROUTINE CALLED ACALC FROM CALC AT THE *

* POINT WHERE THE ABOVE LOOP RESIDED. ACALC THEN *
* INVOKES THE MICROPROGRAM WITH THE FOLLOWING *

* INSTRUCTIONS: *

* LDX .B PUT B ARRAY ADDR INTO X-REG
* LDY .JJ,I PUT JJ INTO Y FOR LOOP COUNTER *

* LDA .TMP1 PUT TMP1,TMP2,TMP3*
• LDA .TMP2 TMP1,TMP2,TMP3 ARE DEFINED AS *
• "BSS 2". TMP3 MUST IMMEDIATELY *

* FOLLOW TMP2 TO PASS ITS ADDRESS. *
* MCALl OCT 105620 INVOKE MCALC AT 1ST ENTRY POINT *
* .F BSS 1 ADDR OF F *

• .F2 BSS 2 ADDR OF F2 (F2=F*F) *

* FDIV OCT 105060 INVOKE FLT PNT DIVIDE ROM ROUTINE*
* .ClC3 DEF CIC3 ARGUMENT FOR FLT PNT DIVIDE *
* MCAL2 OCT 105621 INVOKE MCALC AT 2ND ENTRY POINT *

* .C5 BSS 1 OUTPUT PARAMETERS OF MCALC *

* C6 BSS 1 *

* MCALC IS INVOKED TWICE AT TWO DIFFERENT ENTRY *

* POINTS. THE REASON FOR THIS IS THAT A FLOATING *

* POINT DIVIDE MUST BE PERFORMED IN THE MIDDLE OF *

* MCALC, BUT THE DIVIDE ROUTINE WILL NOT FIT IN WCS, *

*SO THE ROM ROUTINE IS USED. THIS REQUIRES A RETURN*
* TO ACALC TO INVOKE THE ROM ROUTINE. MCALC IS THEN *

• REENTERED TO COMPLETE ITS OPERATION. *

MPYX EQU %0246 ROM FLT PNT MPYX ROUTINE

FLD EQU %7031 ROM FLT PNT LOAD ROUTINE

PACK EQU %7052 ROM FLT PNT PACK ROUTINE
158

"I
i

.-.............. . . ,...-..-.. .., -'•• _



START1 JMP MCALC1 GO TO IST ENTRY POINT
START2 JMP MCALC2 GO TO 2ND ENTRY POINT

* THE FOLLOWING RETURN TABLE IS USED TO JUMP BACK TO *
* THE MAIN MICROPROGRAM FROM SUBROUTINES FMPY,FADD OR*
* FSUB. NORMAL RETURNS CANNOT BE MADE BECAUSE THE *
* RETURN ADDRESS IS LOST WHEN FMPY,FADD OR FSUB CALL *
* OTHER ROUTINES. THIS JUMP TABLE IS USED AS FOLLOWS:*
* RTNTABLE IS LOCATED AT 6002 AND CONTAINS A JUMP TO *
* THE 1ST LOCATION FOLLOWING THE 1ST CALL TO FMPY. *
* BEFORE FMPY IS CALLED, THE IR-REG IS LOADED WITH *
• VALUE 2 IN BITS 0-3. THE RETURN FROM FMPY IS VIA A *
• "JMP J74" USING BITS 4-7 OF THE IR, SO THE RETURN *
• INDEX FOR A FMPY AND A SUBSEQUENT FADD OR FSUB CAN *
• BE LOADED INTO THE IR AT THE SAME TIME. *

RTNTABLE JMP RTNPNT1 TABLE OF JUMPS TO
JMP RTNPNT2 RETURN POINTS FROM
JMP RTNPNT3 SUBROUTINE CALLS.
JMP RTNPNT4 BEFORE JUMPING TO A
JMP RTNPNT5 SUBROUTINE THE LOWER 4
JMP RTNPNT6 BITS OF THE RTNTABLE
JMP RTNPNT7 JMP ENTRY ARE LOADED
JMP RTNPNT8 INTO THE IR. THE
JMP RTNPNT9 SUBROUTINE DOES A "JMP
JMP RTNPNT10 J30 RTNTABLE" TO
JMP RTNPNT11 RETURN TO A CALLER.

THE "J30" REPLACES THE
LOWER 4 BITS OF THE
JMP ADDR WITH THE 4 IER
BITS

DEBUG JMP DEBUG DUMMY ENTRY FOR DEBUG

* SET UP CALLING PARAMETERS. *
* SCRATCH REGISTERS: JJ -- > Y-REG *
* .B -- > X-REG *

? * .TMP1 -- > S4 *
• .TMP2 -- > S8 *
-* .TMP3 -- > S12 *i ********************************* *********************

MCALCI PASS S P SAVE P IN S
PASS S4 A USE S4 AS POINTER TO TMP1
PASS S8 B USE S8 AS POINTER TO TMP2
INC S12 S8 USE S12 AS POINTER TO TMP3
INC S12 S12 NOTE TMP3 IS AT TMP2+2

* CALCULATE Cl. CI=GAMMA1(J)*F *
* NOTE THAT GAM.MAI(J), NU(J), AND RHO(J) ARE ELEMENTS*
* OF THE B ARRAY, AND ARE ARRANGED IN THE ARRAY IN *

* * THAT ORDER. I.E., B(1)=GAMMAl(1), B(2)=NU(1), B(3)=*
* RHO(1), B(4)=GAMMA1(2), B(5)=NU(2), B(6)=RHO(2) ... *
* B(22)=GAMMA1(8), B(23)=NU(8), AND B(24)=RHO(8). *

159



C . . . - - -

********************* ************* ********************

LOOP READ INC M X READ GAMMAl ELEMENT FROM B
INC X X POINT TO 2ND GAMMAl WORD
PASS A TAB PUT 1ST GAMMAl WORD INTO A

READ INC M X READ 2ND GAMMAl WORD
INC X X POINT TO NU ELEMENT OF B
PASS B TAB PUT 2ND GAMMAl WORD INTO B

READ INC PNM P READ F ADDR. POINT TO .F2
PASS S3 TAB F ADDR INTO S3 FOR MPY

IMM CMLO S1 %374 LO 4 MAP TO "JMP RTNPNT1"
PASS IR Sl

JMP FMPY GAMMA1(J)*F=CI RETURN IN A
RTNPNT1 MPCK INC M S4 POINT M AT TMP1

WRTE PASS TAB A WRITE 1ST Cl WORD TO TMP1
INC S3 S4 POINT S3 TO 2ND TMP1 WORD

MPCK INC M S3 NOW, SO DOES M
WRTE PASS TAB B WRITE 2ND Cl WORD TO TMP2

* CALCULATE C2. C2=NU(J)*NU(J) *

PASS S3 X NU(J) ADDR INTO S3
READ INC M X READ NU ELEMENT FROM B

INC X X POINT TO 2ND WORD OF NU
PASS A TAB PUT 1ST WORD OF N INTO AREAD INC M X READ 2ND WORD OF NU

INC X X POINT TO RHO ELEMENT OF B
PASS B TAB PUT 2ND WORD OF NU INTO B

IMM CMLO SI %253 LO 4 MAP TO "JMP RTNPNT2"
PASS IR S1 HI 4 MAP TO "JMP RTNPNT3"

JMP FMPY NU(J)*NU(J) RETURNL: IN AB
RTNPNT2 MPCK INC M S8 POINT M AT TMP2

WRTE PASS TAB A WRITE 1ST C2 WORD TO TMP2
INC S3 S8 POINT S3 TO 2ND TMP2 WORD

MPCK INC M S3 AND M ALSO
WRTE PASS TAB B WRITE 2ND C2 WORD

* CALCULATE C3. C3=C2-F2 *

READ INC PNM P READ .F2. POINT TO FDV INS
PASS S3 TAB PUT F2 ADDR (.F2) INTO S3

JMP FADDSUB C2-F2 RETURNS IN A/B
RTNPNT3 MPCK INC M S12 POINT M AT TMP3

WRTE PASS TAB A WRITE 1ST C3 WORD TO TMP3
INC S3 S12 s3 POINTS TO TMP3+1

MPCK INC M S3 AND SO DOES M
*WRTE PASS TAB B WRITE 2ND C3 WORD TO TMP3

* CALCULATE C4. C4=(RHO(J)*C2)/(C3*C3+C1*C) *

READ INC M S8 READ 1ST WORD OF C2 (TMP2)
INC S3 S8 S3 POINTS TO 2ND WORD
PASS A TAB 1ST WORD OF C2 INTO A-REG

READ INC M S3 READ 2ND WORD
PASS S3 X PASS S3 AT RHO ELEMENT OF

160



INC X X INC X BY 2 TO POINT AT
INC X X NEXT GAMMA
PASS B TAB 2ND WORD OF C2 INTO B-REG

IMM CMLO Si %371 LO 4 MAP TO "JMP RTNPNT4"
PASS IR Si

JMP FMPY RHO(J)*C2 RETURNS IN A/B
RTNPNT4 MPCK INC M S8 POINT M AT TMP2

WRTE PASS TAB A WRITE 1ST WORD RHO(J)*C2
INC S3 S8 POINT S3 TO 2ND WORD TMP2

MPCK INC M S3 AND M ALSO
WRTE PASS TAB B WRITE 2ND WORD RHO(J)*C2
READ INC M S12 READ 1ST WORD OF C3

INC S3 S12 POINT S3 AT 2ND WORD
PASS A TAB PUT 1ST WORD INTO A-REG

READ INC M S3 READ IN 2ND WORD OF C3
PASS S3 S12 POINT S3 BACK AT 1ST WORD
PASS B TAB PUT 2ND WORD INTO B-REG

IMM CMLO S1 %370 LO 4 MAP TO "JMP RTNPNT5"
PASS IR Sl

JMP FMPY C3*C3 RETURNS IN A/B
RTNPNT5 INC S3 P POINT S3 AT .ClC3 ADDRESS

READ INC M S3 READ CIC3 ADDRESS
PASS S3 TAB AND PUT INTO S3

MPCK INC M S3 POINT M AT CIC3
WRTE PASS TAB A WRITE 1ST WORD OF C3*C3

INC S3 S3 POINT S3 AT 2ND WORD CIC3
MPCK INC M S3 AND M ALSO

WRTE PASS TAB B WRITE 2ND WORD OF C3*C3
READ INC M S4 READ IN 1ST WORD OF Cl

INC S3 S4 POINT S3 AT 2ND WORD
PASS A TAB PUT 1ST WORD INTO A-REG

READ INC M S3 READ IN 2ND WORD OF Cl
PASS S3 S4 POINT S3 BACK AT 1ST WORD
PASS B TAB PUT 2ND WORD INTO B-REG

IMM CMLO Sl %147 LO 4 MAP TO "JMP RTNPNT6"
PASS IR Sl HI 4 MAP TO "JMP RTNPNT7"

JMP FMPY C1*Cl RETURNS IN A/B
RTNPNT6 INC S3 P POINT S3 AT .ClC3 ADDRESS

READ INC M S3 READ CiC3 ADDRESS
STFL PASS S3 TAB INTO S3. STFL FOR NEXT ADD

JMP FADDSUB CI*CI+C3*C3 RETURNS IN AB
RTNPNT7 INC S3 P POINT S3 AT .CIC3 ADDRESS

READ INC M S3 READ CIC3 ADDRESS
PASS S3 TAB AND PUT INTO S3

MPCK INC M S3 AND INTO M
WRTE PASS TAB A WRITE 1ST WORD CI*CI+C3*C3

INC S3 S3 POINT S3 AT WORD 2 OF CIC3
MPCK INC M S3 AND M ALSO

WRTE PASS TAB B WRITE 2ND WORD CI*CI+C3*C3
READ INC M S8 READ 1ST WORD RHO(J)*C2

INC S3 S8 POINT AT 2ND WORD
* - PASS A TAB PUT 1ST WORD INTO A-REG

READ INC M S3 READ 2ND WORD
RTND PASS B TAB PUT 2ND WORD INTO B

161



,. ********************************* *********************

*"AT THIS POINT EVERYTHING IS SET UP FOR THE DIVIDE
* OF RHO(J)*C2 BY C1*CI+C3*C3. RETURN TO THE ASSEMBLY*
* LANGUAGE ROUTINE TO INVOKE THE FLOATING POINT *
* DIVIDE ROUTINE. RETURN TO MICROCODE AT MCALC2 WITH *
* THE RESULT IN A/B REGS AND OTHER REGS INTACT. *

Ji** ***** ******* ***** ** ******* ****** ****** *** *** ******* *

MCALC2 MPCK INC M S8 POINT M AT 1ST WORD TMP2
WRTE PASS TAB A 1ST WORD OF C4 INTO TMP2

INC S3 S8 POINT S3 AT 2ND TMP2 WORD
MPCK INC M S3 AND M ALSO

WRTE PASS TAB B 2ND WORD OF C4 INTO TMP2

CALCULATE C5. C5=C5+C3*C4

PASS S3 S12 ADDRESS OF C3 INTO S3
IMM CMLO S1 %105 LO 4 MAP TO "JMP RTNPNT8"

PASS IR Sl HI 4 MAP TO "JMP RTNPNT9"
JMP FMPY C3*C4 RETURNS IN A/B

RTNPNT8 MPCK INC M P READ C5 ADDRESS
STFL PASS S3 TAB INtO S3. STFL FOR NEXT ADD

JMP FADDSUB C5+C3*C4 RETURNS IN A/B
RTNPNT9 READ INC PNM P GET C5 ADDR. POINT C6 ADDR

PASS S3 TAB AND PUT INTO S3
MPCK INC M S3 C5 ADDRESS INTO M

WRTE PASS TAB A 1ST WORD OF C5 STORED
INC S3 S3 POINT TO 2ND WORD

MPCK INC M S3 AND M ALSO
WRTE PASS TAB B 2ND WORD OF C5 STORED

* CALCULATE C6. C6=C6+C1*C4 *

READ INC M S4 READ IN 1ST WORD OF C1
INC S3 S4 POINT S3 AT 2ND WORD OF Cl
PASS A TAB 1ST WORD OF Cl INTO A-REG

READ INC M S3 READ IN 2ND WORD OF Cl
PASS S3 S8 POINT S3 AT C4
PASS B TAB 2ND WORD OF C1 INTO B-REG

IMM CMLO S1 %043 LO 4 MAP TO "JMP RTNPNT10"
PASS IR S1 HI 4 MAP TO "JMP RTNPNT11"

JMP FMPY C1*C4 RETURNS IN A/B
RTNPNT10 READ INC M P READ C6 ADDRESS

STFL PASS S3 TAB INTO S3. STFL FOR NEXT ADD
JMP FADDSUB C6+CI*C4 RETURNS IN A/B

RTNPNT11 READ MPCK INC PNM P GET C6 ADR. POINT TO NEXT
PASS S3 TAB PUT C6 ADDRESS INTO S3
INC M S3 AND INTO M

WRTE PASS TAB A 1ST WORD OF C6 STORED
INC S3 S3 POINT TO 2ND WORD

MPCK INC M S3 M ALSO
WRTE PASS TAB B 2ND WORD OF C6 STORED

DEC Y Y DECREMENT LOOP COUNT
JMP CNDX TBZ RTNMAC IF DONE, RETURN

PASS P S POINT P AT ,F & DO AGAIN
162



Jmp LOOP
RTNMAC RTN RETURN TO ACALC

* FLOATING POINT MULTIPLY ROUTINE. THIS ROUTINE IS *
* TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING *
* 21MX COMPUTERS OPERATING AND REFERENCE MANUAL. THIS*
* ROUTINE ALSO RESIDES IN CONTROL STORE ROM, BUT IT *
* IS NECESSARY TO REPRODUCE IT IN WCS TO AVOID THE *
* PROBLEM OF LEVELED SUBROUTINE CALLS IN THE M-SERIES*

COMPUTER. FMPY HAS BEEN MODIFIED SLIGHTLY TO HANDLE*
* THE ARGUMENT ADDRESS IN REGISTER S3 RATHER THAN P. *
* THE RETURN TO THE CALLING ROUTINE HAS BEEN MODIFIED*
* TO A "JMP J30 RTNTABLE" AS DISCUSSED AT "RTNTABLE".*
* ALSO, INDIRECT ADDRESSING IS NOT SUPPORTED. *

FMPY READ INC M S3 READ 1ST PARAMETER WORD
JSB FLD STORE ARGS IN SCRATCH REGS

INC S9 S9
PASS L S5 FORM EXPI+EXP2+I
ADD S9 S9 AND SAVE IN S9

Ri PASS A Slo FORM (WORD1 LOBITS)/2 IN A
PASS S2 S7 PASS WORD2 HIBITS INTO S2

JSB MPYX JMP TO MPY SUB & RTN WITH
PASS S5 B HIBITS IN B & SAVE IN S5
PASS S2 Sll PASS WORD1 HIBITS INTO S2
PASS Sll A LOBITS INTO A. SAVE INTO S

[ I Rl PASS A S6 FORM (WORD2 LOBITS)/2 IN A
JSB 4PYX JMP To MPY SUB & RTN WITH

PASS L A LOBITS IN A & PASS INTO L
ADD A Sil ADD BOTH LOBITS. CHK FOR C

JMP CNDX COUT RJS *+2 (ELSE TRUNCATE DIGITS)
INC B B IF COUT, BUMP HIBITS
PASS L B ADD HIBITS & SAVE IN SlI
ADD SlI S5
PASS A S7 PASS WORD2 HIBITS INTO A

JSB MPYX JMP TO MPY SUB & RTN WITH
Ri PASS A A LOBITS IN A. SAVE LOBITS/2
COV PASS L A ADD LOBITS/2 TO HIBITS SUM

ENV Li ADD A SI SHIFT Li TO REORIENT
JMP CNDX AL15 RJS *+3 CHECK FOR CARRY INTO OR
JMP CNDX OVFL *+4 BORROW FROM HIBITS &

DEC B B ADJUST ACCORDINGLY
JSB PACK
JMP J30 RTNTABLE RTN TO MAIN MICROPROGRAM

INC B B CAN'T OVERFLOW FROM HIBITS
JSR PACK
JMP J30 RTNTABLE RTN TO MAIN MICROPROGRAM

* FLOATING POINT ADD SUBTRACT ROUTINE. THIS ROUTINE *
* IS TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING*

0 * 21Mx COMPUTERS OPERATING AND REFERENCE MANUAL. IT *
* ALSO RESIDES IN CONTROL STORE ROM BUT IS DUPLICATED*
* IN WCS TO AVOID THE PROBLEM OF LEVELED SUBROUTINE *

163



* CALLS IN THE M-SERIES. FADD HAS BEEN MODIFIED TO *
* ALLOW A PARAMETER ADDRESS IN SCRATCH REGISTER S3 *
* RATHER THAN THE P REGISTER. INDIRECT ADDRESSING IS *
* NOT USED, SO THE CALL TO "INDIRECT" IS OMITTED. *
• ALSO, SCRATCH REGISTER S2 IS USED IN PLACE OF S8 TO*
* FREE S8 FOR USE IN THE MAIN PROGRAM. THE RETURN TO
* THE CALLING ROUTINE HAS ALSO BEEN MODIFIED TO A *
* "JMP J74 RTNTABLE" AS DISCUSSED AT "RTNTABLE". *

FADD READ INC M S3 READ 1ST PARAMETER WORD
JSB FLD UNPACK WORDS INTO SCR REGS

PASS B S7 CHECK FOR WORD2=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S5 %200 IF SO, MAKE EXP MOST NEG

PASS Sil CHECK FOR WORD1=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE

IMM LOW S9 %200 IF SO, MAKE EXP MOST NEG
JMP CNDX FLAG DIFR IF DOING ADD,SKIP AHEAD

CMPS B B FORM 2-COMP OF HIBITS IN B
CMPS S6 S6 FORM 2-COMP OF LOBITS
INC S6 S6 OF WORD2

JMP CNDX COUT RJS DIFR IF COUT OCCURS
INC B B BUMP HIBITS

JMP CNDX AL15 RJS DIFR CHECK SIGN IF POS,JUMP
Li PASS B IF NEG,CHECK FOR MOST

JMP CNDX TBZ RJS DIFR NEG # (100...)
RI PASS B B IF SO, SHIFT BACK (010...)

INC S5 S5 & BUMP EXP
DTFR PASS A S6

PAS L S5 FIND DIFF IN EXPS
CLFL SUB S2 S9 & STORE IN S2, FLAG=0

JMP CNDX TBZ ADD2 IF DIFF=0, JMP TO ADD STEP
JMP CNDX ALl5 RVRS IF NEG, WORD2>WORD1

CMPS S2 S2 FORM -DIFF
INC S2 S2 & STORE -DIFF IN S2

JMP SWAMPCHK
RVRS PASS L B HOLD B IN L

PASS B SIlI WORD1<WORD2, FILL IN B,A
PASS A S10 WITH S11,S10

PASL SlI ALSO FILL SIl,S1O,S9
PASS S10 S6 WITH B,$6,$5
PASS S9 S5

SWAMPCHK IMM LOW L %350 FORM -30B8 IN L
SUB S2 IF -DIFF>-31,RTN WITH

* LARGER #

JMP CNDX Al15 OUT JMP TO RESTORE A,B
SHIFT ARS Ri PASS B B NOW START SHIFT LOOP

INC S2 S2 INC COUNTER
JMP CNDX TBZ RJS SHIFT LOOP UNTIL DONE

ADD2 COV PASS L Slo PASS LOBITS INTO L
ADD A A ADD & CHECK FOR COUT

JMP CNDX COUT RJS *+3 IF NOT, JUMP
IMM HIGH L %0 CLR L(15) FOR OVFL

164



ENV INC B B IF SO,INC HIBITS & ENABLE

*'"OVERFLOW

CLFL PASS L Sil FLAG=0
ENV ADD B B ADD HIBITS & ENABLE OVFL
JMP CNDX OVFL RJS PKSUB IF NO OVFL, RETURN
JMP CNDX AL15 *+2 OVFL IMPLIES SIGN CHANGE

STFL SO FLAG=U IF AL15=0
LWF R1 PASS B B DO FULL WORD SHIFT
LWF R1 PASS A A USING FLAG REG TO INJECT

* SIGN
INC S9 S9 BUMP EXP

PKSUB JSB PACK REPACK A,B REGS
JMP J74 RTNTABLE RTN TO MAIN MICROPROGRAM

OUT PASS B Sli PASS MUCH LARGER WORD INTO
* B,A

JSB PACK
JMP J74 RTNTABLE RTN TO MAIN MICROPROGRAM
END

165



Vita

Captain Gary A. Schoon was born on June 10, 1950 in

Washburn, Illinois. He graduated from Metamora Township

High School, Metamora, Illinois in 1968. After attending

the University of Illinois for one year, he entered the

United States Air Force in 1969. He served as an elec-

tronics technician at various assignments within the United

States and overseas. In 1974 he returned to the University

of Illinois under the Airman's Education and Commissioning

Program and received a Bachelor of Science degree in

Computer Engineering. After receiving his commission at

the Air Force Officer Training School in 1977, he was as-

signed to the North American Aerospace Defense Command in

Colorado Springs, Colorado, where he served as a systems

analyst. He entered the Air Force Institute of Technology

in 1981.

Permanent address: 4530 Debonair Circle

Colorado Springs, Colorado 80917

1

:.2 166

.1



UNCLAS.IFIED
SECURITY CLASS-FICATION OF rHI5 aV5sE n'o, DA:& .,'tred)

REPORT DOCUMENTATION PAGE RFA I INSTRUCTIONS
BEFOKE COMPLETING FORM

I. REPORT NUMIOER F2 GOVACE ON 3 PFCI'
0

F'T"- CATALOG NUUAER

AFIT/GCS/EE/82D-31 .. .__....... ... .

4. TITLE (and Subtitle) S. TFE " LPOFT & PERIOD COVERED

APPLICATIONS DIRECTED MICROPROGRAMMING MS THESIS
ON A MINICOMPUTER SYSTEM 6 PERVORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8 CONIRFACT OR GRANT NUMBER(s)

GARY A. SCHOON, Capt, USAF

9. PERFORMING ORGANIZATION NAME AND AODRESS I'- - OO- M ELEMENT PROJECT. TAr-K
A.-4 A. WORK UNIT NUMBERS

Air Force Institute 'of Technology (AFIT/EN)
Wright-Patterson AFB, OH 45433

I 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Institute of Technology (AFIT/EN) December 1982
Wright-Patterson AFB, OH 45433 13. NUMBER Or PAGES

166
14. MONITORING AGENCY NAME & ADORESS(i different from Controlling Office) 15. SECURITY CLASS. (of thin report)

15a. DECLASSIFICATION. DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abtracet entered in Block 20, If different from Rport)

IS. SUPPLEMENTARY NOTES J3 €17C d e~ease: ,AW ArR 1$0-17.

Approved for public release; IAW AFR 190-17 fo e o"n
D~ean for eseaich and;,e lPIPi ll

Air Fore Institute cl jc "

Ylzsghl-PaIuuraoa ALA (.il ,

I9. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

Microprogramming
Computer Architecture
Tuning
HP 21KX Computer

20. ABSTRACT (Continue on reverse side It necessary and Identify by blork ntimber)

The use of microprogramming to improve the performance of application pro-
grams was investigated. The application programs used in the study were from
various research laboratories at Wright-Patterson Air Force Base, Ohio. The

.- user-microprogrammable Hewlett-Packard (HP) 21MX minicomputer was used for the
investigation.

Two application programs were chosen as candidates for microprogramming, a
wind tunnel stress analysis program and a laser materials modeling program. The

programs were analyzed to determine where microprogramming should be applied
FORM

* DD I JAN 73 1473 EDITION OF 1 NOV 5 IS OSOLETE UNCLASSIFIED
SECUkITY CLASSiFICATlo 01- THIS PAGE (14hen [ate Entered,



UNCLASSIFTED

SECURITY CLASSIFICATION OF THIS PAGE(When Datea ntered)

74
using an activity profile generator program. The microcode for the programs was
implemented, and the speed improvement measurements of the resultant programs

. were made.
The study further looked at the ieasibility of automating the microprogram-

ming tuning process on the HP 21MX computer. Approaches to automatically
selecting program segments for microprogramming and automatically synthesizing
the microcode were discussed.

"//

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dae Entered)



FILMED


